Intelligent Control Approach to Anemia Management
贫血管理的智能控制方法
基本信息
- 批准号:7920591
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-23 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsAnemiaAnti-Arrhythmia AgentsArtificial IntelligenceArtsBiological ModelsBiological Neural NetworksBiomedical EngineeringBloodBlood VesselsCaringChronicClinicalClinical ResearchCollectionComplexComputer AssistedComputer SimulationComputer softwareComputing MethodologiesControlled Clinical TrialsDataDecision Support SystemsDevelopmentDialysis procedureDiseaseDoctor of PhilosophyDoseDrug PrescriptionsEffectivenessElectrical EngineeringEnd stage renal failureEngineeringEnrollmentEpidemiologyErythropoietinEvaluationFeedbackFrequenciesFundingGoalsGuidelinesHemodialysisHemoglobinHemoglobin concentration resultHumanIndividualInformation SciencesInsulinIronMachine LearningMeasuresMedicineMethodologyMethodsMorbidity - disease rateNephrologyOutcomePatient MonitoringPatientsPharmaceutical PreparationsPhysiologicalPopulationProcessProtocols documentationPublic Health SchoolsResearchResearch PersonnelSafetySamplingSavingsTechniquesTechnologyTestingTrainingTraining ProgramsTranslationsUniversitiesVeteransWaranWorkbaseclinical practicecomputer sciencecost effectivenessdata managementexperienceimprovedinsightinstructormathematical algorithmnovelpatient populationprimary outcomeprogramsrecombinant human erythropoietinresearch clinical testingresponsesimulationstatisticstheoriestool
项目摘要
DESCRIPTION (provided by applicant):
Management of anemia due to end-stage renal disease is a multifactorial decision process involving administration of recombinant human erythropoietin (rHuEPO) and iron, as well as assessment of other factors influencing the progress of the disease. This application aims at improving the cost-effectiveness of this process through the use of state-of-the-art numerical tools from control engineering and machine learning. The specific aims are the collection of anemia management data and development of new guidelines for period of measuring hemoglobin levels if necessary, development of individualized, computer-assisted approach to rHuEPO dosing based on modern control engineering and machine learning approach, evaluation of the developed tools through numeric simulation and assessment of the potential improvements in therapy and projected savings in rHuEPO utilization. The final aim is to provide a physical implementation and to perform a clinical evaluation of the developed methodology. The applicant, Dr. Adam E. Gaweda, is an Instructor of Medicine in the Department of Medicine, Division of Nephrology at the University of Louisville. His original training is in the field of electrical engineering (M.Eng.) and computer science (Ph.D.). The applicant plans to develop as an independent and well established researcher in the field of biomedical engineering with focus on translation of state-of-the-art technology to heath care. To achieve this goal the applicant will enroll into the Clinical Research, Epidemiology and Statistics Training (CREST) Program at the University of Louisville, School of Public Health and Information Sciences
描述(由申请人提供):
终末期肾病所致贫血的管理是一个多因素决策过程,涉及重组人促红细胞生成素(rHuEPO)和铁的管理,以及影响疾病进展的其他因素的评估。该应用旨在通过使用来自控制工程和机器学习的最先进的数字工具来提高该过程的成本效益。具体目标是收集贫血管理数据和制定新的指导方针,如有必要,测量血红蛋白水平的时期,开发个性化的,计算机辅助的方法,以现代控制工程和机器学习方法的基础上rHuEPO给药,通过数值模拟和评估开发的工具,在治疗和预计节省rHuEPO利用的潜在改进的评估。最终的目的是提供一个物理实现,并进行临床评价的开发方法。申请人亚当·E博士Gaweda是路易斯维尔大学医学系肾脏病学分部的医学讲师。他最初的训练是在电气工程领域(工程硕士)。计算机科学(PhD)申请人计划发展成为生物医学工程领域的独立和成熟的研究人员,专注于将最先进的技术转化为医疗保健。为了实现这一目标,申请人将参加路易斯维尔大学公共卫生和信息科学学院的临床研究,流行病学和统计培训(CREST)计划
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM E GAWEDA其他文献
ADAM E GAWEDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM E GAWEDA', 18)}}的其他基金
Computational Approach to Personalized Anemia Management
个性化贫血管理的计算方法
- 批准号:
8526456 - 财政年份:2012
- 资助金额:
$ 5.4万 - 项目类别:
Computational Approach to Personalized Anemia Management
个性化贫血管理的计算方法
- 批准号:
8708852 - 财政年份:2012
- 资助金额:
$ 5.4万 - 项目类别:
Computational Approach to Personalized Anemia Management
个性化贫血管理的计算方法
- 批准号:
8914596 - 财政年份:2012
- 资助金额:
$ 5.4万 - 项目类别:
Computational Approach to Personalized Anemia Management
个性化贫血管理的计算方法
- 批准号:
8370685 - 财政年份:2012
- 资助金额:
$ 5.4万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 5.4万 - 项目类别:
Research Grant