Ocean Circulation and Ice Shelf Melting on the Amundsen Sea Continental Shelf
阿蒙森海大陆架上的海洋环流和冰架融化
基本信息
- 批准号:NE/G001367/1
- 负责人:
- 金额:$ 51.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sea levels around the world are currently rising by about 2 mm every year. That may not sound very much, but people living in areas such as Holland or East Anglia are already threatened by coastal erosion. If we are to say how that threat might change in the future we must learn how to forecast changes in sea level. To do this we must understand what is happening to the Earth's great reservoirs of freshwater, and whether or not they are slowly draining into the ocean. The largest of these reservoirs by far is the Antarctic Ice Sheet, which contains 70% of all the freshwater on the planet. At present we do not know whether the ice sheet is growing or shrinking overall, but we do know that some parts of it are getting smaller. The fastest changes are happening at the edge of the ice sheet, where it flows into the sea, in a place called Pine Island Bay. Nobody yet knows what is causing these changes, and their speed has taken scientists by surprise. Pine Island Bay is geographically the far south of the Pacific Ocean, and the image of warmth that this conjures up is not entirely misplaced. The air temperatures never rise above freezing and the coast is battered by storms, but beneath the cold surface of the sea, water temperatures rise as high as 1 degree Celcius. This may seem cold by our standards (sea temperatures around Britain rarely drop into single figures, even in winter), but it is warm enough to melt the ice. Pine Island Glacier is a vast river of ice that flows out into Pine Island Bay. It carries as much water as the River Rhine, but in frozen form. The last 75 km of the Glacier floats on the waters of Pine Island Bay, and the bottom melts so intensely that half of the ice carried in the glacier is lost within the space of 30 years. The other half breaks off the end of the glacier as icebergs, which drift away to melt elsewhere. It is not hard to understand that warm water causes rapid melting, but what do 'warm' and 'rapid' really mean? If we change the water temperature by a small amount, by how much will the melt rate change? To find the answers to those questions we must make measurements of the water temperature beneath the glacier, but to do so is enormously challenging. The glacier is between 300 m and 1 km thick, so we cannot get instruments through from above, while the drifting Antarctic pack ice bars access to the front of the glacier to all but the most powerful ships. Engineers working at the Southampton Oceanography Centre have, over many years, designed and built a solution to this problem in the form of a robotic submarine that they can programme to dive beneath the ice, make measurements along a pre-defined track, then return to the surface with the vital data. By teaming up with American scientists, who can make use of a powerful icebreaker, we hope to take the submarine right up to Pine Island Glacier and launch it on its mission beneath the ice.The underwater cavern beneath the glacier is completely unknown and the submarine must find its own way in and out, avoiding any obstacles that it finds along its path. The Antarctic pack ice is notoriously unpredictable and could prove a huge challenge to the ship. But the potential return makes the risks worthwhile. Armed with our new knowledge we will build a computer model that describes the flow of water within the remote cavern beneath the glacier and in the sea to the north of it. Using this model we will determine if there have been any changes in the water temperature in Pine Island Bay over the past 20 years and how such changes would have affected melting of the glacier base. Other scientists can then use our results to establish if changes in the glacier's melt rate could have caused the ice sheet to thin in the way that has been observed, and together we will be able to say with greater certainty what impact the glaciers of Pine Island Bay will have on the future coastlines of Holland and East Anglia.
目前,全球海平面每年上升约2毫米。这听起来可能不多,但生活在荷兰或东英吉利亚等地区的人们已经受到海岸侵蚀的威胁。如果我们要说这种威胁在未来可能如何变化,我们必须学会如何预测海平面的变化。要做到这一点,我们必须了解地球上巨大的淡水水库正在发生什么,以及它们是否正在慢慢排入海洋。目前为止,这些水库中最大的是南极冰盖,它包含了地球上70%的淡水。目前,我们不知道冰盖总体上是在扩大还是缩小,但我们知道它的某些部分正在变小。最快的变化发生在冰盖的边缘,在那里它流入大海,在一个叫松岛湾的地方。目前还没有人知道是什么导致了这些变化,它们的速度让科学家们大吃一惊。松岛湾在地理位置上位于太平洋的最南端,这给人带来的温暖印象并不完全是错误的。空气温度从未超过冰点,海岸受到风暴的袭击,但在寒冷的海面下,水温上升高达1摄氏度。按照我们的标准,这似乎很冷(英国周围的海水温度很少下降到个位数,即使在冬天),但它足够温暖,可以融化冰。松岛冰川是一条巨大的冰河,流入松岛湾。它的水量和莱茵河一样多,但都是冰冻的。最后75公里长的冰川漂浮在松岛湾的沃茨上,底部融化得如此剧烈,以至于冰川中一半的冰在30年内消失了。另一半则从冰川的末端脱落,形成冰山,漂流到别处融化。不难理解,温暖的海水会导致快速融化,但“温暖”和“快速”到底是什么意思?如果我们稍微改变水温,融化速率会改变多少?为了找到这些问题的答案,我们必须测量冰川下的水温,但这样做是非常具有挑战性的。冰川的厚度在300米到1公里之间,所以我们无法从上面通过仪器,而漂移的南极浮冰阻碍了除了最强大的船只之外的所有船只进入冰川的前部。多年来,在南安普顿海洋学中心工作的工程师们设计并建造了一种机器人潜艇,他们可以编程潜入冰层下,沿着预定义的轨道进行测量,然后带着重要数据返回水面。通过与美国科学家合作,他们可以使用一艘强大的破冰船,我们希望将潜艇直接带到松岛冰川,并在冰下执行使命。冰川下的水下洞穴是完全未知的,潜艇必须找到自己的进出方式,避开沿着发现的任何障碍物。2南极浮冰是出了名的不可预测,这对这艘船来说是一个巨大的挑战。但潜在的回报让风险变得值得。有了我们的新知识,我们将建立一个计算机模型,描述冰川下遥远的洞穴和冰川以北的海洋中的水流。利用这个模型,我们将确定在过去的20年里,松岛湾的水温是否有任何变化,以及这些变化如何影响冰川底部的融化。然后,其他科学家可以利用我们的研究结果来确定冰川融化速度的变化是否会导致冰盖以观察到的方式变薄,我们将能够更确定地说松岛湾的冰川将对荷兰和东英吉利亚未来的海岸线产生什么影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-resolution sub-ice-shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica
南极洲西部松岛冰川二十世纪脱底和退缩的高分辨率冰架下海底记录
- DOI:10.1002/2017jf004311
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Davies D
- 通讯作者:Davies D
Basal terraces on melting ice shelves
- DOI:10.1002/2014gl060618
- 发表时间:2014-08-16
- 期刊:
- 影响因子:5.2
- 作者:Dutrieux, Pierre;Stewart, Craig;Steffen, Konrad
- 通讯作者:Steffen, Konrad
Getz Ice Shelf melting response to changes in ocean forcing
- DOI:10.1002/jgrc.20298
- 发表时间:2013-09-01
- 期刊:
- 影响因子:3.6
- 作者:Jacobs, S.;Giulivi, C.;Mouginot, J.
- 通讯作者:Mouginot, J.
Geometric and oceanographic controls on melting beneath Pine Island Glacier
- DOI:10.1002/2013jc009513
- 发表时间:2014-04-01
- 期刊:
- 影响因子:3.6
- 作者:De Rydt, J.;Holland, P. R.;Jenkins, A.
- 通讯作者:Jenkins, A.
Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: Origin and implications for the history of Pine Island Glacier
- DOI:10.1002/jgrf.20087
- 发表时间:2013-09-01
- 期刊:
- 影响因子:3.9
- 作者:Graham, Alastair G. C.;Dutrieux, Pierre;Jenkins, Adrian
- 通讯作者:Jenkins, Adrian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adrian Jenkins其他文献
Modeling the vertical structure of the ice shelf–ocean boundary current under supercooled condition with suspended frazil ice processes: A case study underneath the Amery Ice Shelf, East Antarctica
模拟冰架的垂直结构——过冷条件下的海洋边界流以及悬浮的碎冰过程:东南极洲阿默里冰架下方的案例研究
- DOI:
10.1016/j.ocemod.2020.101712 - 发表时间:
2020-12 - 期刊:
- 影响因子:3.2
- 作者:
Chen Cheng;Adrian Jenkins;Zhaomin Wang;Chengyan Liu - 通讯作者:
Chengyan Liu
Polarization of radio waves transmitted through Antarctic ice shelves
通过南极冰架传输的无线电波的偏振
- DOI:
10.3189/172756402781817572 - 发表时间:
2002 - 期刊:
- 影响因子:2.9
- 作者:
C. Doake;H. Corr;Adrian Jenkins - 通讯作者:
Adrian Jenkins
Bedmap3 updated ice bed, surface and thickness gridded datasets for Antarctica
Bedmap3 更新了南极洲的冰床、表面和厚度网格化数据集
- DOI:
10.1038/s41597-025-04672-y - 发表时间:
2025-03-10 - 期刊:
- 影响因子:6.900
- 作者:
Hamish D. Pritchard;Peter T. Fretwell;Alice C. Fremand;Julien A. Bodart;James D. Kirkham;Alan Aitken;Jonathan Bamber;Robin Bell;Cesidio Bianchi;Robert G. Bingham;Donald D. Blankenship;Gino Casassa;Knut Christianson;Howard Conway;Hugh F. J. Corr;Xiangbin Cui;Detlef Damaske;Volkmar Damm;Boris Dorschel;Reinhard Drews;Graeme Eagles;Olaf Eisen;Hannes Eisermann;Fausto Ferraccioli;Elena Field;René Forsberg;Steven Franke;Vikram Goel;Siva Prasad Gogineni;Jamin Greenbaum;Benjamin Hills;Richard C. A. Hindmarsh;Andrew O. Hoffman;Nicholas Holschuh;John W. Holt;Angelika Humbert;Robert W. Jacobel;Daniela Jansen;Adrian Jenkins;Wilfried Jokat;Lenneke Jong;Tom A. Jordan;Edward C. King;Jack Kohler;William Krabill;Joséphine Maton;Mette Kusk Gillespie;Kirsty Langley;Joohan Lee;German Leitchenkov;Cartlon Leuschen;Bruce Luyendyk;Joseph A. MacGregor;Emma MacKie;Geir Moholdt;Kenichi Matsuoka;Mathieu Morlighem;Jérémie Mouginot;Frank O. Nitsche;Ole A. Nost;John Paden;Frank Pattyn;Sergey Popov;Eric Rignot;David M. Rippin;Andrés Rivera;Jason L. Roberts;Neil Ross;Antonia Ruppel;Dustin M. Schroeder;Martin J. Siegert;Andrew M. Smith;Daniel Steinhage;Michael Studinger;Bo Sun;Ignazio Tabacco;Kirsty J. Tinto;Stefano Urbini;David G. Vaughan;Douglas S. Wilson;Duncan A. Young;Achille Zirizzotti - 通讯作者:
Achille Zirizzotti
Dynamics of gas near the Galactic Centre
银河系中心附近的气体动力学
- DOI:
10.1093/mnras/270.3.703 - 发表时间:
1994 - 期刊:
- 影响因子:4.8
- 作者:
Adrian Jenkins;J. Binney - 通讯作者:
J. Binney
Open Research Online Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica
南极洲阿蒙森海陆架断裂处的开放在线海洋学观测研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
D. P. Walker;Adrian Jenkins;K. Assmann;D. Shoosmith;M. Brandon - 通讯作者:
M. Brandon
Adrian Jenkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adrian Jenkins', 18)}}的其他基金
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
- 批准号:
NE/Y001338/1 - 财政年份:2026
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
The influence of ocean circulation on local biogeochemistry and melting tidewater glaciers in northern Baffin Bay
海洋环流对巴芬湾北部当地生物地球化学和潮水冰川融化的影响
- 批准号:
NE/X008304/1 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
Drivers of Oceanic Change in the Amundsen Sea (DeCAdeS)
阿蒙森海海洋变化的驱动因素 (DeCAdeS)
- 批准号:
NE/T012803/1 - 财政年份:2020
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
Ocean Forcing of Ice Sheet Evolution in the Marine Basins of East Antarctica
东南极洲海洋盆地冰盖演化的海洋强迫
- 批准号:
NE/L007037/1 - 财政年份:2020
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
Ocean2Ice: Processes and variability of ocean heat transport toward ice shelves in the Amundsen Sea Embayment
Ocean2Ice:阿蒙森海湾冰架海洋热传输的过程和变化
- 批准号:
NE/J005746/1 - 财政年份:2013
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
Ocean circulation and melting beneath the ice shelves of the south-eastern Amundsen Sea
阿蒙森海东南部冰架下的海洋环流和融化
- 批准号:
NE/J005770/1 - 财政年份:2013
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
Multi-scale modelling of the ocean beneath ice shelves
冰架下海洋的多尺度建模
- 批准号:
NE/G018146/1 - 财政年份:2010
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
相似海外基金
Ocean Small Eddies Interaction with Large-scale Circulation and Sea Ice
海洋小涡流与大尺度环流和海冰的相互作用
- 批准号:
RGPIN-2021-03667 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Discovery Grants Program - Individual
Did ocean circulation changes build the Antarctic ice sheet?
海洋环流的变化是否形成了南极冰盖?
- 批准号:
DE220100279 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Discovery Early Career Researcher Award
Impact of ocean warming on sea-ice conditions and ocean circulation in the Canadian Arctic Archipelago.
海洋变暖对加拿大北极群岛海冰状况和海洋环流的影响。
- 批准号:
567858-2022 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Postdoctoral Fellowships
CoolRhythms: the impact of ice volume and ocean circulation on Earth's Coolhouse climate beat
CoolRhythms:冰量和海洋环流对地球凉爽室气候节拍的影响
- 批准号:
NE/W009366/1 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Fellowship
Ocean Small Eddies Interaction with Large-scale Circulation and Sea Ice
海洋小涡流与大尺度环流和海冰的相互作用
- 批准号:
RGPIN-2021-03667 - 财政年份:2021
- 资助金额:
$ 51.65万 - 项目类别:
Discovery Grants Program - Individual
Ocean Small Eddies Interaction with Large-scale Circulation and Sea Ice
海洋小涡流与大尺度环流和海冰的相互作用
- 批准号:
DGECR-2021-00412 - 财政年份:2021
- 资助金额:
$ 51.65万 - 项目类别:
Discovery Launch Supplement
Ice-Ocean interactions and the circulation of salty oceans on Icy Moons
冰-海洋相互作用和冰卫星上咸海洋的环流
- 批准号:
2599615 - 财政年份:2021
- 资助金额:
$ 51.65万 - 项目类别:
Studentship
Ocean Circulation and Ice Shelf Melting in the Bellingshausen Sea, Antarctica
南极洲别林斯高晋海的海洋环流和冰架融化
- 批准号:
2433426 - 财政年份:2020
- 资助金额:
$ 51.65万 - 项目类别:
Studentship
Parameterizing the impact of fjord circulation on the ocean forcing of melting ice sheets
参数化峡湾环流对融化冰盖的海洋强迫的影响
- 批准号:
NE/P009638/1 - 财政年份:2017
- 资助金额:
$ 51.65万 - 项目类别:
Training Grant
Parameterizing the impact of fjord circulation on the ocean forcing of melting ice sheets
参数化峡湾环流对融化冰盖的海洋强迫的影响
- 批准号:
1945814 - 财政年份:2017
- 资助金额:
$ 51.65万 - 项目类别:
Studentship