p53-induced Regulation of Transcription in the Chromatin Context
p53 诱导的染色质转录调节
基本信息
- 批准号:7965754
- 负责人:
- 金额:$ 13.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAlu ElementsApoptosisApoptoticAttentionBindingBinding SitesBiological ProcessBoxingCell Cycle ArrestCellular StressChromatinChromatin FibrilChromatin LoopChromatin Remodeling FactorCodeComplexConsensus SequenceDNADNA BindingDNA DamageDNA SequenceDNA Transposable ElementsDataDimensionsDistalEP300 geneEnhancersEnvironmentEventEvolutionGADD45GC Rich SequenceGene ActivationGene Expression RegulationGene TargetingGenesGenetic TranscriptionGenomicsGoalsGuanine + Cytosine CompositionHistonesHumanHuman GenomeIn VitroIndiumKineticsLengthMajor GrooveManuscriptsMapsMeasuresMinor GrooveModelingMolecularMolecular ConformationMotivationMuscle RigidityMutationNucleosomesPeriodicityPlayPositioning AttributePreparationProcessPromoter RegionsPropertyProtein p53RNA Polymerase IIIRecruitment ActivityRegulationRelative (related person)Response ElementsRoleSchemeSideSiteTP53 geneTransactivationTranscription Initiation SiteTranscriptional RegulationTumor SuppressionTumor Suppressor ProteinsWeightflexibilitygel electrophoresisgenome-widein vivoinsightprogenitorpromoterresearch studyresponse
项目摘要
This year, we paid special attention to genome-wide distribution of putative p53 binding sites and their relationship to various transposable elements, in particular Alu repeats. We analyzed 160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements; they are located in the vicinity of Boxes A and B of the internal RNA polymerase III promoter. Interestingly, several Alu-residing p53 REs are associated with apoptotic genes (e.g., CASP-10). In addition, using a position weight matrix approach, we found approximately 400,000 potential p53 sites in Alu elements genome-wide. These sites are located in the same regions of Alu repeats as the functional p53 REs and thus can be divided into two groups depending on their vicinity to the Boxes A or B. The nucleosome-mapping experiments made on Alu elements earlier, suggest that the p53 sites from these two groups have different chromatin environments which is critical for the p53-DNA binding. Finally, we compared the p53 sites with the corresponding Alu consensus sequences and concluded that the two groups of sites probably evolved through different mechanisms one group was generated by CG-to-CA:TG mutations; the other group apparently pre-existed in the progenitors of several Alu subfamilies, such as AluSp and AluSx. Remarkably, this assessments holds both for the functional p53 REs and for putative BSs. Our observations may be important for understanding the evolution of the p53 regulatory network at the genome-wide level. Comparing distribution of the p53 sites in the CCA- and Apo-genes, we found that the CCA-sites are located 2-3 kb away from the transcription start sites (TSS) of the target genes, whereas most of the Apo-sites are clustered within 1 kb from TSS. Note that such a distribution of the p53 sites is counter-intuitive because the p53 binding to a distal CCA-site and induction of the corresponding CCA-gene appears to be more efficient than the p53 binding to a close Apo-site and activation of the Apo-gene. We further showed that the flanking sequences of the CCA-sites, with moderate or low GC content (35-55 % GC), reveal strong periodicity of the AT-rich and the GC-rich clusters, similar to that observed in the nucleosomal DNA sequences, suggesting that stable positioned nucleosomes are likely to form here. (The limited experimental data available for several CCA-sites p21, 14-3-3σ and GADD45 are consistent with this assessment.) The predicted rotational positioning of these nucleosomes implies that the p53 REs are exposed in the bent conformation favorable for the p53 recognition. To put it differently, the bendable DNA elements in the vicinity of the CCA-sites are organized in such a way that the nucleosomal DNA is preformed for the p53 tetramer binding. For example, the p21 5-response element, the most effective p53 RE in vivo, is separated from TSS by 2.5 kb, and is bent in the same favorable conformation as observed in the crystallized nucleosomes. We suggest that exposure of the p21 and other CCA-sites accelerates the process of p53 binding in vivo. p53, in turn, recruits co-activators such as p300/CBP and/or chromatin remodeling factors to the promoters, thereby facilitating opening of chromatin and increasing the level of transcription. (The detailed molecular mechanisms of this long-distance transfer are not known. The enhancer-type looping of the higher-order chromatin fibril is a likely possibility. In such a case, the long distance between the strong CCA-sites and TSS would be a natural consequence of the chromatin rigidity looping of 2-3 kb fibril is much more favorable energetically than looping of 0.5-1 kb.) By contrast, the Apo-sites are located in extremely GC-rich regions (up to 75-80 % GC). Such sequences are typically characterized by multiple positioning and relatively easy reorganization of nucleosomes, as well as low H1 level. We hypothesize that this dynamic environment interferes with the p53 search for its cognate binding site and makes it less effective. Thus, the difference in nucleosomal organization of the two sets of p53 response elements appears to be a key factor affecting the strength of p53-DNA binding and kinetics of induction of the p53 target genes. Our assessment is further substantiated by a collaborative experimental study of the p53 tetramer binding to nucleosomal DNA (in preparation). According to our results, the p53 affinity to its cognate site strongly depends on the rotational positioning of this site in nucleosome. Namely, the p53-DNA binding is much more effective when the p53 RE is positioned in such a way that the tetramers CWWG (mentioned above) are bent into the major groove, and their minor groove is accordingly exposed. This is exactly the situation we envisioned in the case of the CCA-sites preformed for the p53 binding. Our model differs from the earlier concept connecting the selective activation of the CCA- and Apo-genes to the binding affinities of their REs to p53. Instead, we emphasize a direct correlation between the selection of p53-induced tumor suppression pathway (apoptosis versus cell cycle arrest) and structural organization of the corresponding p53-binding sites in chromatin. We add new dimensions to the existing paradigm the relative positioning and chromatin environment of the p53 REs. Our scheme not only explains the above cases but also provides a new insight into the cellular mechanisms of activation of hundreds of genes by p53. Another study in progress is related to more general evolutionary aspects, such as the inter-relationship between the p53 REs in human genome and interspersed repeat sequences. First, we analyzed the genome-wide distribution of the spacer length, S, and found this to be highly non-random. (The spacer is inserted between two p53 half-sites, RRRCWWGYYY.) In particular, the p53 sites with S=0 and S=3 bp are nearly twice as frequent as the sites with S=2, 4 or 5 bp. Second, we showed that these differences are caused by transposons, in particular, by Alu repeats. In addition, we compared the spacer profiles for 2000 human genes known to be regulated by p53. It was found that the p53-activated genes are surrounded mostly by REs with S=0, whereas the promoter regions of p53-repressed genes are enriched with the p53 sites having S=3 bp. Importantly, this distinction becomes even more pronounced when only the genes with the strongest p53-induced effect are selected (manuscript in preparation). The results will give us a better understanding of the relationship(s) between the mechanism(s) of gene regulation and the genomic environment of the TF binding sites operative in this regulation.
今年,我们特别关注了假定的p53结合位点的全基因组分布及其与各种转座因子的关系,特别是Alu重复序列。我们分析了迄今为止鉴定的160个功能性p53 REs,发现其中24个重复发生。这些重复相关的REs中有一半以上位于Alu元素中;它们位于内部RNA聚合酶III启动子框A和B附近。有趣的是,一些alu - p53 REs与凋亡基因(如CASP-10)有关。此外,使用位置权重矩阵方法,我们在全基因组的Alu元件中发现了大约40万个潜在的p53位点。这些位点与功能性p53 REs位于Alu重复序列的相同区域,因此根据它们与box A或box b的距离可以分为两组。先前对Alu元件进行的核小体定位实验表明,这两组p53位点具有不同的染色质环境,这对p53- dna结合至关重要。最后,我们将p53位点与相应的Alu共识序列进行了比较,得出结论:两组位点可能通过不同的机制进化:一组是由CG-to-CA:TG突变产生的;另一组明显早于几个Alu亚家族的祖先,如AluSp和AluSx。值得注意的是,这种评估适用于功能性p53 REs和推定的BSs。我们的观察结果对于理解p53调控网络在全基因组水平上的进化可能是重要的。比较CCA基因和apo基因中p53位点的分布,我们发现CCA位点位于距靶基因转录起始位点(TSS) 2-3 kb处,而大多数apo位点聚集在距TSS 1 kb处。值得注意的是,p53位点的这种分布是违反直觉的,因为p53与远端cca位点结合并诱导相应的cca基因似乎比p53与近端apo位点结合并激活apo基因更有效。我们进一步发现,具有中等或低GC含量(35- 55% GC)的cca位点的侧翼序列显示出与核小体DNA序列相似的富at和富GC簇的强周期性,表明稳定位置的核小体可能在这里形成。(几个cca站点p21、14-3-3&;#963;和GADD45的有限实验数据与该评估一致。)预测这些核小体的旋转定位意味着p53 REs暴露在有利于p53识别的弯曲构象中。换句话说,cca位点附近的可弯曲DNA元件以这样一种方式组织,即核小体DNA是为p53四聚体结合而预先形成的。例如,体内最有效的p53 RE - p21 - 5-response元件与TSS相隔2.5 kb,并且弯曲成与结晶核小体相同的有利构象。我们认为p21和其他cca位点的暴露加速了p53在体内的结合过程。反过来,p53将p300/CBP和/或染色质重塑因子等共激活因子招募到启动子中,从而促进染色质的打开,提高转录水平。(这种远距离转移的详细分子机制尚不清楚。高阶染色质原纤维的增强子型环是可能的。在这种情况下,强cca位点与TSS之间的较长距离将是染色质刚性的自然结果,2-3 kb原纤维的环在能量上比0.5-1 kb的环更有利。相比之下,载脂蛋白位点位于极富GC的区域(高达75- 80% GC)。这类序列的典型特征是核小体的多定位和相对容易重组,并且H1水平较低。我们假设这种动态环境干扰了p53对其同源结合位点的搜索,使其效率降低。因此,两组p53应答元件的核小体组织差异似乎是影响p53- dna结合强度和p53靶基因诱导动力学的关键因素。我们的评估进一步证实了p53四聚体结合核小体DNA(准备)的合作实验研究。根据我们的研究结果,p53与其同源位点的亲和力强烈依赖于该位点在核小体中的旋转定位。也就是说,当p53 RE的位置使四聚体CWWG(如上所述)弯曲成主槽时,p53- dna结合更加有效,它们的小槽也相应地暴露出来。这正是我们在为p53结合而制备的cca位点的情况下所设想的情况。我们的模型不同于先前的概念,将CCA-和载脂蛋白基因的选择性激活与其REs与p53的结合亲和力联系起来。相反,我们强调p53诱导的肿瘤抑制途径(细胞凋亡与细胞周期阻滞)的选择与染色质中相应p53结合位点的结构组织之间的直接关联。我们为现有的范式增加了新的维度,即p53 res的相对定位和染色质环境。我们的方案不仅解释了上述情况,而且为p53激活数百个基因的细胞机制提供了新的见解。另一项正在进行的研究与更一般的进化方面有关,例如人类基因组中p53 REs与穿插重复序列之间的相互关系。首先,我们分析了间隔长度S的全基因组分布,发现这是高度非随机的。(间隔插入在两个p53半位点RRRCWWGYYY之间。)特别是,S=0和S=3 bp的p53位点几乎是S=2、4或5 bp位点的两倍。其次,我们发现这些差异是由转座子引起的,特别是由Alu重复序列引起的。此外,我们比较了2000个已知受p53调控的人类基因的间隔序列。结果发现,p53活化基因的周围多为S=0的REs,而p53抑制基因的启动子区域则富含S= 3bp的p53位点。重要的是,当只选择具有最强p53诱导效应的基因时,这种区别变得更加明显(手稿正在准备中)。这一结果将使我们更好地理解基因调控机制与参与调控的TF结合位点的基因组环境之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Zhurkin其他文献
Victor Zhurkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Zhurkin', 18)}}的其他基金
p53-induced Regulation of Transcription in the Chromatin Context
p53 诱导的染色质转录调节
- 批准号:
9153693 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
p53-induced Regulation of Transcription in the Chromatin Context
p53 诱导的染色质转录调节
- 批准号:
9556386 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
DNA Folding in Chromatin at the Supra-nucleosome Level
核小体上水平的染色质 DNA 折叠
- 批准号:
10014465 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
p53-induced Regulation of Transcription in the Chromatin Context
p53 诱导的染色质转录调节
- 批准号:
10014467 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
p53-induced Regulation of Transcription in the Chromatin Context
p53 诱导的染色质转录调节
- 批准号:
7733278 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
DNA Folding in Chromatin and Interaction with Transcription Factors
染色质中的 DNA 折叠及其与转录因子的相互作用
- 批准号:
8157498 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
DNA Deformations and Interactions with Transcription Fac
DNA 变形及其与转录因子的相互作用
- 批准号:
7291749 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
p53-induced Regulation of Transcription in the Chromatin Context
p53 诱导的染色质转录调节
- 批准号:
8349201 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
DNA Folding in Chromatin and Interaction with Transcription Factors
染色质中的 DNA 折叠及其与转录因子的相互作用
- 批准号:
8552858 - 财政年份:
- 资助金额:
$ 13.61万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Continuing Grant