Suppression of Beta-arrestin1 Phosphorylation and Function by Beta-arrestin2
Beta-arrestin2 对 Beta-arrestin1 磷酸化和功能的抑制
基本信息
- 批准号:7964066
- 负责人:
- 金额:$ 20.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AblationAdaptor Signaling ProteinAddressAffectArrestinsBindingBiologicalBiological ProcessCell DeathCell Fate ControlCell SurvivalCellsCo-ImmunoprecipitationsComplexDataDominant-Negative MutationDoseEmbryoEquilibriumExhibitsFamily memberFibroblastsG-Protein-Coupled ReceptorsGTP-Binding ProteinsGene TransferGenesGrowthHeterodimerizationImageImmunoprecipitationKnock-outKnockout MiceMAP Kinase GeneMediatingMusNormal CellOkadaic AcidOxidative StressPathway interactionsPatternPhosphorylationPhysiologicalPlayProtein DephosphorylationProtein FamilyProtein InhibitionProtein Phosphatase 2A Regulatory Subunit PR53ProteinsRecruitment ActivityRegulationResistanceRetinal ConeRoleSignal PathwaySignal TransductionVertebrate PhotoreceptorsVisualWestern BlottingWild Type Mousearrestin 1arrestin 2arrestin3beta-arrestincell growthintermolecular interactionmutantpolyclonal antibodyreceptorreceptor functionresponseretinal rods
项目摘要
In the present study, there are three major findings. First, under physiological conditions, beta-arrestin1 and beta-arrestin2 physically interact with each other. Second, phosphorylation of beta-arrestin1 plays a crucial role in the formation of the beta-arrestin complex and subsequent recruitment of PP2A. Third, ablation of beta-arrestin2 leads to markedly increased phosphorylation of beta-arrestin1 which promotes cell survival and cell growth via elevated activation of ERK1/2.
(1) Co-localization and co-immunoprecipitation of beta-arrestin1 and beta-arrestin2
To investigate the potential relationship between beta-arrestin1 and beta-arrestin2, we expressed both beta-arrestin family members at a matched level in cultured mouse embryonic fibroblasts (MEFs) derived from beta-arrestin1 and beta-arrestin2 double knockout mice. Using confocal immunocytochemical imaging, we visualized a similar intracellular distribution pattern of specific immunofluorescent signals of beta-arrestin1 and beta-arrestin2 and an excellent pixel-to-pixel correction when the images were emerged in cultured mouse MEFs, suggesting these beta-arrestins are co-localized. To directly demonstrate physical interaction of beta-arrestin1 with beta-arrestin2, we performed immunoprecipitation and Western blotting. Total cellular proteins containing both beta-arrestin subtypes were first immunoprecipitated with either a beta-arrestin1 or beta-arrestin2 polyclonal antibody. The pull-down of beta-arrestin1 by anti-beta-arrestin2 in the immunoprecipitation was then confirmed by Western blot.
(2) Ablation of beta-arrestin2 increases the phosphorylation level of beta-arrestin1 and reduces beta-arrestin1/ PP2A complex formation
To explore the functional consequence of the intermolecular interaction of beta-arrestin1 and beta-arrestin2, we examined the potential impact of beta-arrestin2 ablation on beta-arrestin1 phosphorylation in MEFs derived from beta-arrestin2 knockout (KO) mice. To our surprise, the lack of beta-arrestin2 led to a profound increase in beta-arrestin1 phosphorylation level. Adenoviral gene transfer of beta-arrestin2 fully normalized -arrestin1 phosphorylation status, indicating that the hyper-phosphorylation of beta-arrestin1 is specifically attributable to the absence of beta-arrestin2 rather than an adaptive response due to beta-arrestin2 null background. Next, we found that endogenous beta-arrestin1 and PP2A form a complex in MEFs derived from wild type (WT) mice, as evidenced by their abundant co-immunoprecipitation. The association of beta-arrestin1 with PP2A was strikingly impaired in beta-arrestin2 deficient MEFs. Adenoviral gene transfer of beta-arrestin2 rescued the interaction of beta-arrestin1 with PP2A, indicating that beta-arrestin2 is required for the formation of PP2A/beta-arrestin1 complex. These data suggest that beta-arrestin2-dependent interaction of PP2A with beta-arrestin1 may sever as an important mechanism responsible for beta-arrestin1 dephosphorylation and the termination of beta-arrestin1-mediated signaling.
We further determined whether altered beta-arrestin1 phosphorylation status affects its interaction with beta-arrestin2 and PP2A. A dominant negative beta-arrestin1 mutant (S412A) markedly impaired beta-arrestin heterodimerization and reduced the recruitment of PP2A by beta-arrestin1. These data corroborate the importance of beta-arrestin1 phosphorylation in its intermolecular interaction with beta-arrestin2 that subsequently recruit PP2A to the beta-arrestin complex.
(3) Deficiency of beta-arrestin2 increases cell viability, rendering cells resistant to oxidative stress-induced cell death.
The next key question is what is the biological significance of the negative regulation of beta-arrestin1 phosphorylation by beta-arrestin2? To address this question, we characterized cell survival and cell growth in WT MEFs or those lacking either beta-arrestin1 or 2. Interestingly, deficiency of beta-arrestin2, but not beta-arrestin1, rendered cells resistant to H2O2-induced cell death. H2O2-induced reduction in cell viability was fully restored in beta-arrestin2 KO MEFs infected by an adenoviral expression of beta-arrestin2, indicating that the resistance of beta-arrestin2 KO cells to oxidative stress is a direct consequence of the gene ablation instead of an adaptive response. In addition, deficiency of beta-arrestin2 but not beta-arrestin1 markedly enhanced MEF growth rate, suggesting the coexisted beta-arrestin1 and beta-arrestin2 elicit different functional roles.
(4) Beta-arrestin1 phosphorylation positively correlates with activation of ERK1/2.
To define the mechanism underlying the prosurvival and pro-growth effects of beta-arrestin2 ablation, we examined major signaling pathways involved in the regulation of cell fate, in particular, ERK1/2 MAPK pathway. ERK1/2 phosphorylation level was overtly augmented in beta-arrestin2 deficient cells, and restored to normal level when beta-arrestin2 was reintroduced. Inhibition of protein phosotases with okadaic acid (OA) led to a dose-dependent increase in beta-arrestin1 phosphorylation which was accompanied by a proportional increase in EKR1/2 phosphorylation (activation). In contrast, expression of the dominant negative beta-arrestin1 (S412A) mutant suppressed ERK1/2 activation. These results indicate that beta-arrestin2 ablation-associated increase in ERK1/2 activation is a consequence of hyper-phosphorylation of beta-arrestin1. Importantly, inhibition ERK1/2 activity with PD98059 (10 mM) blocked beta-arrestin2 ablation-induced cell resistance to oxidative stress, indicating that the pro-survival effect of beta-arrestin2 ablation is mediated by enhanced phosphorylation of beta-arrestin1 and subsequent activation of ERK1/2.
These findings not only define beta-arrestin2 as a powerful endogenous negative regulator of beta-arrestin1 phosphorylation and biological function, but also highlight the importance of the balance between the coexisted beta-arrestin1 and beta-arrestin2 in maintaining normal cell growth and cell viability.
在本研究中,有三个主要发现。首先,在生理条件下,β-arrestin1 和 beta-arrestin2 彼此发生物理相互作用。其次,β-arrestin1 的磷酸化在 β-arrestin 复合物的形成和随后的 PP2A 募集中起着至关重要的作用。第三,β-arrestin2 的消除会导致 β-arrestin1 的磷酸化显着增加,从而通过 ERK1/2 的激活增强来促进细胞存活和细胞生长。
(1) beta-arrestin1和beta-arrestin2的共定位和免疫共沉淀
为了研究 β-arrestin1 和 β-arrestin2 之间的潜在关系,我们在源自 β-arrestin1 和 β-arrestin2 双敲除小鼠的培养小鼠胚胎成纤维细胞 (MEF) 中以匹配水平表达这两种 β-arrestin 家族成员。使用共聚焦免疫细胞化学成像,我们观察到 β-arrestin1 和 β-arrestin2 特异性免疫荧光信号的相似细胞内分布模式,以及当图像出现在培养的小鼠 MEF 中时出色的像素到像素校正,表明这些 β-arrestin 是共定位的。为了直接证明 β-arrestin1 与 β-arrestin2 的物理相互作用,我们进行了免疫沉淀和蛋白质印迹。首先用 β-arrestin1 或 β-arrestin2 多克隆抗体对含有两种 β-arrestin 亚型的总细胞蛋白进行免疫沉淀。然后通过蛋白质印迹证实了免疫沉淀中抗 β-arrestin2 对 β-arrestin1 的下拉作用。
(2) 消除 beta-arrestin2 会增加 beta-arrestin1 的磷酸化水平并减少 beta-arrestin1/ PP2A 复合物的形成
为了探索 β-arrestin1 和 β-arrestin2 分子间相互作用的功能后果,我们研究了 β-arrestin2 消融对源自 β-arrestin2 敲除 (KO) 小鼠的 MEF 中 β-arrestin1 磷酸化的潜在影响。令我们惊讶的是,β-arrestin2 的缺乏导致 β-arrestin1 磷酸化水平显着增加。 β-arrestin2 的腺病毒基因转移完全标准化了 -arrestin1 磷酸化状态,表明 β-arrestin1 的过度磷酸化具体归因于 β-arrestin2 的缺失,而不是由于 β-arrestin2 无效背景导致的适应性反应。接下来,我们发现内源性 β-arrestin1 和 PP2A 在源自野生型 (WT) 小鼠的 MEF 中形成复合物,正如它们丰富的免疫共沉淀所证明的那样。在 β-arrestin2 缺陷的 MEF 中,β-arrestin1 与 PP2A 的关联显着受损。 β-arrestin2 的腺病毒基因转移挽救了 β-arrestin1 与 PP2A 的相互作用,表明 β-arrestin2 是 PP2A/β-arrestin1 复合物形成所必需的。这些数据表明,PP2A 与 β-arrestin1 的 β-arrestin2 依赖性相互作用可能是导致 β-arrestin1 去磷酸化和终止 β-arrestin1 介导的信号传导的重要机制。
我们进一步确定改变的 beta-arrestin1 磷酸化状态是否会影响其与 beta-arrestin2 和 PP2A 的相互作用。显性失活 β-arrestin1 突变体 (S412A) 显着损害 β-arrestin 异二聚化,并减少 β-arrestin1 对 PP2A 的募集。这些数据证实了 β-arrestin1 磷酸化在其与 β-arrestin2 分子间相互作用中的重要性,β-arrestin2 随后将 PP2A 招募到 β-arrestin 复合物中。
(3) β-arrestin2 缺乏会增加细胞活力,使细胞能够抵抗氧化应激诱导的细胞死亡。
下一个关键问题是 beta-arrestin2 对 beta-arrestin1 磷酸化的负调控有何生物学意义?为了解决这个问题,我们对 WT MEF 或缺乏 beta-arrestin1 或 2 的 MEF 中的细胞存活和细胞生长进行了表征。有趣的是,缺乏 beta-arrestin2 而不是 beta-arrestin1 会使细胞对 H2O2 诱导的细胞死亡具有抵抗力。在被表达β-arrestin2的腺病毒感染的β-arrestin2 KO MEF中,H2O2诱导的细胞活力降低完全恢复,表明β-arrestin2 KO细胞对氧化应激的抵抗是基因消融的直接结果,而不是适应性反应。此外,β-arrestin2 的缺乏而非 β-arrestin1 的缺乏显着提高了 MEF 的生长速度,表明共存的 β-arrestin1 和 β-arrestin2 会引发不同的功能作用。
(4) Beta-arrestin1 磷酸化与 ERK1/2 的激活呈正相关。
为了明确 β-arrestin2 消融促进存活和促生长作用的机制,我们检查了参与细胞命运调节的主要信号通路,特别是 ERK1/2 MAPK 通路。 ERK1/2 磷酸化水平在 β-arrestin2 缺陷细胞中明显增强,当重新引入 β-arrestin2 时,ERK1/2 磷酸化水平恢复到正常水平。用冈田酸 (OA) 抑制蛋白磷酸酶会导致 β-arrestin1 磷酸化呈剂量依赖性增加,同时 EKR1/2 磷酸化(激活)也成比例增加。相反,显性失活β-arrestin1 (S412A) 突变体的表达抑制了ERK1/2 的激活。这些结果表明,β-arrestin2 消融相关的 ERK1/2 激活增加是 β-arrestin1 过度磷酸化的结果。重要的是,用 PD98059 (10 mM) 抑制 ERK1/2 活性可阻断 β-arrestin2 消除诱导的细胞对氧化应激的抵抗力,表明 β-arrestin2 消除的促生存作用是通过增强 β-arrestin1 磷酸化和随后激活 ERK1/2 介导的。
这些发现不仅将β-arrestin2定义为β-arrestin1磷酸化和生物学功能的强大内源性负调节因子,而且强调了共存的β-arrestin1和β-arrestin2之间的平衡在维持正常细胞生长和细胞活力中的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui-Ping Xiao其他文献
Rui-Ping Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui-Ping Xiao', 18)}}的其他基金
Pi3k Gs Signal Control During B2-adrenergic stimulation
B2 肾上腺素能刺激期间的 Pi3k Gs 信号控制
- 批准号:
6674194 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
Intracellular Acidosis-Activated p38 MAPK & Hypoxia
细胞内酸中毒激活的 p38 MAPK
- 批准号:
6969624 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
CaMKII-dB and CaMKII-dC Oppositely Regulate Cardiomyocyte viability
CaMKII-dB 和 CaMKII-dC 相反地调节心肌细胞活力
- 批准号:
7591974 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
B-Arrestin2 Is Required for BAR Resensitization But Not
B-Arrestin2 是 BAR 重新敏化所必需的,但并非如此
- 批准号:
7327091 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
Cardiac Excitation-Contraction Coupling by p38 MAPK
p38 MAPK 的心脏兴奋-收缩耦合
- 批准号:
6815451 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
B-Arrestin2 Is Required for BAR Resensitization But Not its Desensitization
B-Arrestin2 是 BAR 重新敏化所必需的,但不是其脱敏所必需的
- 批准号:
7732333 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
B-Arrestin2 Is Required for BAR Resensitization But Not its Desensitization
B-Arrestin2 是 BAR 重新敏化所必需的,但不是其脱敏所必需的
- 批准号:
7592069 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
Mitochondrial Protein HSG Is a Major Determinant of Oxid
线粒体蛋白 HSG 是氧化的主要决定因素
- 批准号:
7327023 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
Dysregulation of HSG Triggers Proliferative Disorders
HSG 失调会引发增殖性疾病
- 批准号:
6968763 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:
Agonist Stereochemistry Determines Beta2-Adrenergic G Protein Coupling
激动剂立体化学测定 Beta2-肾上腺素 G 蛋白偶联
- 批准号:
7964073 - 财政年份:
- 资助金额:
$ 20.33万 - 项目类别:














{{item.name}}会员




