Enabling Technology for Separation and Enhancement of Mixed Signals

混合信号分离和增强的支持技术

基本信息

项目摘要

DESCRIPTION (provided by applicant): We propose to develop a system to isolate and extract individual bioelectrical and acoustic sources from the output of sensors that are responding to multiple simultaneous sources. The purpose of the system is to enable the development of other health-related applications by allowing researchers to focus on the applications instead of the details of signal collection and analysis. Our system will "clean up" live signals in real time by separating competing foreground sources, suppressing background sources, and identifying and removing echoes and similar effects from the results. It will employ multiple sensors with algorithms to extract individual sources from noisy environments, and to determine source directions and environment characteristics such as reflecting surfaces. An innovation in our system is that some sensors are used to "tag" known sources. Tagging sensors are attached to significant target or masking sources that are identified to the system. Other sensors are used to pick up background noise and remote (untagged) target or masking sources. The system will provide high-level functionality through tagging sensors and simple, general information about the sources and the environment, using techniques of "blind source separation". This will allow researchers to focus less on details of the data collection and coping with the environment, and more on the sources themselves or their positional and signal information. In Phase 1, we will test the separation algorithm and observe its performance with and without tagging sensors. The proposed system would be useful to researchers who need to create high-fidelity low- noise recordings in noisy environments such as MRI scanners, and who are not audio or bioelectrical-signal engineers. It would allow a user to tag the most prominent sources, record the entire "signal scene", and extract the desired source signals and related location information. A second important use of our system would be as an assistive listening device for persons with mild to moderate hearing loss, allowing them to function effectively in noisy social situations such as meetings, restaurants, and conferences. With appropriate sensors, the system will be suitable for use with bioelectric signals - EEG, EMG, etc. - to allow researchers and clinicians to study fetal and maternal heartbeats separately, both for waveform patterns and for the locations of the corresponding sources. PUBLIC HEALTH RELEVANCE: We propose to develop a system to isolate and extract individual signal sources, whether bioelectrical (EEG, ECG) or acoustic, to enable the development of other health-related applications. An important use of our system would be as an assistive listening device for persons with mild to moderate hearing loss, allowing them to function effectively in noisy social situations such as meetings and restaurants. It would also be useful to researchers who need to create high-fidelity low-noise recordings in noisy environments such as MRI scanners. It would be equally suitable for separating bioelectrical signals such as fetal and maternal heartbeats, and providing location information for each of the sources.
描述(由申请人提供):我们建议开发一种系统,从响应多个同时源的传感器的输出中隔离和提取单独的生物电和声源。该系统的目的是让研究人员能够专注于应用程序而不是信号收集和分析的细节,从而实现其他健康相关应用程序的开发。我们的系统将通过分离竞争前景源、抑制背景源以及识别和消除结果中的回声和类似影响来实时“清理”实时信号。它将采用多个传感器和算法来从嘈杂的环境中提取单个源,并确定源方向和环境特征,例如反射表面。我们系统的一项创新是使用一些传感器来“标记”已知来源。标记传感器连接到系统识别的重要目标或掩蔽源。其他传感器用于拾取背景噪声和远程(未标记)目标或掩蔽源。该系统将使用“盲源分离”技术,通过标记传感器以及有关源和环境的简单、一般信息来提供高级功能。这将使研究人员能够更少地关注数据收集和应对环境的细节,而更多地关注源本身或其位置和信号信息。在第一阶段,我们将测试分离算法并观察其在有或没有标签传感器的情况下的性能。所提出的系统对于需要在 MRI 扫描仪等嘈杂环境中创建高保真低噪声记录的研究人员以及非音频或生物电信号工程师的研究人员来说非常有用。它将允许用户标记最突出的源,记录整个“信号场景”,并提取所需的源信号和相关位置信息。我们系统的第二个重要用途是作为轻度至中度听力损失人士的辅助听力设备,使他们能够在嘈杂的社交场合(例如会议、餐厅和会议)中有效地发挥作用。借助适当的传感器,该系统将适用于生物电信号(脑电图、肌电图等),使研究人员和临床医生能够分别研究胎儿和母亲的心跳,包括波形模式和相应源的位置。 公共健康相关性:我们建议开发一种系统来隔离和提取单个信号源,无论是生物电(EEG、ECG)还是声学信号源,以实现其他健康相关应用的开发。我们系统的一个重要用途是作为轻度至中度听力损失人士的辅助听力设备,使他们能够在会议和餐厅等嘈杂的社交场合中有效地工作。对于需要在 MRI 扫描仪等嘈杂环境中创建高保真低噪声记录的研究人员来说,它也很有用。它同样适用于分离生物电信号,例如胎儿和母亲的心跳,并提供每个信号源的位置信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel M MacAuslan其他文献

Joel M MacAuslan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel M MacAuslan', 18)}}的其他基金

Factory Noise Removal to Preserve Situational Awareness
消除工厂噪音以保持态势感知
  • 批准号:
    10081963
  • 财政年份:
    2020
  • 资助金额:
    $ 16.15万
  • 项目类别:
VISUAL ARTICULATORY FEEDBACK
视觉关节反馈
  • 批准号:
    6213372
  • 财政年份:
    2000
  • 资助金额:
    $ 16.15万
  • 项目类别:
SOFTWARE FOR CHARACTERIZING LARYNGEAL DYNAMICS
用于表征喉部动力学的软件
  • 批准号:
    2127645
  • 财政年份:
    1996
  • 资助金额:
    $ 16.15万
  • 项目类别:
SOFTWARE FOR CHARACTERIZING LARYNGEAL DYNAMICS
用于表征喉部动力学的软件
  • 批准号:
    2391122
  • 财政年份:
    1996
  • 资助金额:
    $ 16.15万
  • 项目类别:
DEVICE FOR ENHANCING ARTIFICIAL-LARYNX SPEECH
增强人工喉语音的装置
  • 批准号:
    2900053
  • 财政年份:
    1995
  • 资助金额:
    $ 16.15万
  • 项目类别:
DEVICE FOR ENHANCING ARTIFICIAL-LARYNX SPEECH
增强人工喉语音的装置
  • 批准号:
    2539676
  • 财政年份:
    1995
  • 资助金额:
    $ 16.15万
  • 项目类别:
DEVICE FOR ENHANCING ELECTROLARYNGEAL SPEECH
增强喉电语音的装置
  • 批准号:
    2128438
  • 财政年份:
    1995
  • 资助金额:
    $ 16.15万
  • 项目类别:
SOFTWARE FOR CHARACTERIZING LARYNGEAL DYNAMICS
用于表征喉部动力学的软件
  • 批准号:
    2127643
  • 财政年份:
    1994
  • 资助金额:
    $ 16.15万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了