Exact Statistical Tools for Genetic Association Studies

用于遗传关联研究的精确统计工具

基本信息

  • 批准号:
    7805162
  • 负责人:
  • 金额:
    $ 11.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2011-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall goal of our research is to develop and extend powerful exact statistical tools for testing genetic association, and to incorporate these methods into two existing, widely used software packages (Cytel Studio, SAS) that will serve the needs of data analysts in pharmaceuticals, genetic epidemiology and public health, and other fields which require a greater understanding of the genetic determinants of complex disease. The demand for these analytic tools is rising dramatically, as rapid progress in genotyping technology is making it easier and less costly to measure sampled subjects for ever larger numbers of genetic markers. Genetic association represents an observed correlation between an investigative genetic marker and some physical trait, and can be assessed using either traditional case-control or family-based study designs. In either case, there are compelling applications of permutation or exact statistical approaches that are computationally challenging, yet are simply unavailable in currently used software or are implemented in a manner that requires excessive memory or computation. The computational innovations developed for this project will fill this gap, significantly improving the efficiency and power of existing tools used for genetic association under both family-based and case-control designs. During Phase I, we will build a prototype computer program that includes (i) exact family-based tests for both biallelic and multiallelic markers, and (ii) a permutation procedure that simultaneously tests genetic association assuming various modes of inheritance (i.e., recessive, dominant, additive, or codominant). We will also investigate the feasibility of incorporating these procedures into a SAS PROC, complementing and extending currently implemented SAS JMP Genomics procedures for testing genetic association. As a part of Phase II, we will integrate our Phase I tools into Cytel's StatXact system and into the SAS JMP Genomics system as an external procedure. We will additionally (i) extend the exact family-based procedures to accommodate haplotype data, (ii) develop and implement algorithms for permutation approaches to large-scale screening experiments, (iii) incorporate exact versions of basic genetic epidemiologic procedures, and (iv) incorporate efficient Monte Carlo sampling tools to extend the usefulness of the exact procedures to larger data sets. PUBLIC HEALTH RELEVANCE: Rapid progress in genotyping technology is making it easier and less costly to identify increasingly large numbers of genetic markers from sampled humans. These markers can be used to identify new genes potentially associated with many complex diseases. This project will provide genetics researchers with more accurate and efficient statistical tools for analyzing data from these studies.
描述(由申请人提供):我们研究的总体目标是开发和扩展强大的精确统计工具,用于测试遗传关联,并将这些方法合并到两个现有的,广泛使用的软件包(Cytel Studio, SAS)中,这些软件包将服务于制药,遗传流行病学和公共卫生等领域的数据分析师的需求,这些领域需要对复杂疾病的遗传决定因素有更深入的了解。随着基因分型技术的快速发展,对这些分析工具的需求正在急剧上升,这使得对取样对象进行大量遗传标记的测量变得更加容易,成本也更低。遗传关联是指调查遗传标记与某些身体特征之间观察到的相关性,可以使用传统的病例对照或基于家庭的研究设计进行评估。在任何一种情况下,都有排列或精确统计方法的引人注目的应用程序,这些应用程序在计算上具有挑战性,但在当前使用的软件中根本不可用,或者以需要过多内存或计算的方式实现。为该项目开发的计算创新将填补这一空白,显著提高现有用于基于家庭和病例对照设计的遗传关联工具的效率和功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PRALAY SENCHAUDHURI其他文献

PRALAY SENCHAUDHURI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PRALAY SENCHAUDHURI', 18)}}的其他基金

Exact Regression Software for Correlated Categorical Data
相关分类数据的精确回归软件
  • 批准号:
    8905963
  • 财政年份:
    2015
  • 资助金额:
    $ 11.21万
  • 项目类别:
Exact Statistical Tools for Genetic Association Studies
用于遗传关联研究的精确统计工具
  • 批准号:
    8601542
  • 财政年份:
    2010
  • 资助金额:
    $ 11.21万
  • 项目类别:
Exact Statistical Tools for Genetic Association Studies
用于遗传关联研究的精确统计工具
  • 批准号:
    8454950
  • 财政年份:
    2010
  • 资助金额:
    $ 11.21万
  • 项目类别:
New Methods to reduce Bias and Mean Square Error of Maximum Likelihood Estimators
减少最大似然估计的偏差和均方误差的新方法
  • 批准号:
    8394896
  • 财政年份:
    2009
  • 资助金额:
    $ 11.21万
  • 项目类别:
New Methods to reduce Bias and Mean Square Error of Maximum Likelihood Estimators
减少最大似然估计的偏差和均方误差的新方法
  • 批准号:
    8538472
  • 财政年份:
    2009
  • 资助金额:
    $ 11.21万
  • 项目类别:
New Methods to Reduce Bias and Mean Square Error of Maximum Likelihood Estimators
减少最大似然估计器偏差和均方误差的新方法
  • 批准号:
    7161282
  • 财政年份:
    2009
  • 资助金额:
    $ 11.21万
  • 项目类别:
Exact Inference Software for Correlated Categorical Data
用于相关分类数据的精确推理软件
  • 批准号:
    7053934
  • 财政年份:
    2004
  • 资助金额:
    $ 11.21万
  • 项目类别:
Exact Inference Software for Correlated Categorical Data
用于相关分类数据的精确推理软件
  • 批准号:
    7128194
  • 财政年份:
    2004
  • 资助金额:
    $ 11.21万
  • 项目类别:
Exact Inference Software for Correlated Categorical Data
用于相关分类数据的精确推理软件
  • 批准号:
    6736754
  • 财政年份:
    2004
  • 资助金额:
    $ 11.21万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了