Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
基本信息
- 批准号:8107915
- 负责人:
- 金额:$ 47.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-20 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAnatomyAtlasesBirthBrainBrain MappingCaringChildChildhoodCognitive deficitsDatabasesDeformityDevelopmentDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingEarly treatmentGestational AgeGoalsImageImage AnalysisImpairmentInfantInterventionKnowledgeLesionLifeLive BirthMagnetic Resonance ImagingManualsMapsMeasuresMedicalMental disordersMethodsMetricModalityNeonatalNeonatal Intensive CareNeurocognitive DeficitNeurologicNeurological outcomeNormal RangeOutcomePatientsPopulationPregnancyPremature BirthPremature InfantProcessReportingResearchSignal TransductionStagingStructureSurvival RateSymptomsTechnologyTerm BirthTestingTimeUnited StatesWeightbasebrain volumeclinically relevantfunctional outcomesgray matterimaging modalityimprovedischemic lesionneonatenervous system disorderneuropsychologicaloutcome forecastprematureprognostic indicatorresearch clinical testingtoolwhite matter
项目摘要
DESCRIPTION (provided by applicant): We will establish a quantification method for neonatal brain MRI to evaluate the abnormalities of preterm born neonates. In the U.S., approximately 12% of all neonates are born preterm (<37 weeks gestation), with 2% of these being very preterm (VPB, 28-32 weeks gestation). The percentage of preterm births has been increasing over the last ten years, partly due to improved neonatal care for preterm infants. Nevertheless, about half of the VPB infants may develop clinically-evident neurological or psychological disorders and the number could be even higher if subtle functional abnormalities are included. The extent of neurocognitive deficits in the late preterm infants (33-36 weeks gestation) is also unknown. However, most of the neuro- cognitive deficits are not easily detected during the first year of life. To benefit from early intervention and to develop more deficits-specific interventions, we need methods to detect and quantify brain abnormalities at an early stage. MRI is one of the most promising and sensitive methods to detect subtle anatomic abnormalities in the neonatal brain. Previous brain MRI studies have found some correlations between several types of abnormalities and neurological outcomes, but there are also reports that found no relationship between signal alterations and neurological outcomes. Hence, the current knowledge does not justify the use of MRI for routine clinical evaluations. To optimize the usefulness of MRI for neonatal and pediatric care, systematic research, based on quantitative image analysis and functional correlation, is needed. The proposed method is based on two core technologies for the quantification of neonatal brain anatomy: a deformable brain atlas with detailed anatomic information and a highly elastic topology-preserved warping method. The combination will provide multiple MR parameters from 176 automatically segmented brain structures. The goals of this project are to establish an atlas-based, automated quantification method for the neonatal brain, to evaluate the detail anatomy of premature neonates at a term-equivalent age. The overall hypothesis is that our DTI-guided quantitative brain analysis will sensitively detect anatomical abnormalities of preterm born neonates in region- specific manner. We have four specific aims. In Aim 1, we will create a multi-contrast (T1-, T2-weighted, and DTI) normal-term neonatal brain atlas for quantitative brain analysis, which will be a statistical representation of the population ("Bayesian atlas"). In Aim 2, we will combine the Bayesian atlas with highly elastic topology- preserved warping (Large Deformation Diffeomorphic Metric Mapping, LDDMM) for automated brain segmentation and test the segmentation accuracy. In Aim 3, we will use the combination of the Bayesian atlas and LDDMM to perform T1/T2/DTI quantification of term neonatal brain MRIs. In Aim 4, we will apply the method to the brain MRIs from term-equivalent preterm born infants (born at 28-36 weeks gestational age) and compare the MR parameters to those in the term infants. This study will be a first step toward seeking very early prognostic indicators for functional outcomes of the anatomical brain abnormalities in preterm births.
PUBLIC HEALTH RELEVANCE: We will establish an automated quantification method for neonatal brain MRI to evaluate the brain anatomical abnormalities of preterm born neonates. The number of very preterm born babies is increasing in the US, partly due to improved neonatal intensive care for these babies, and about half of these infants develop neurological or psychiatric disorders. We believe that this proposed MRI method will improve the diagnosis and hence early intervention for treatments of preterm born neonates and pediatric patients.
描述(由申请人提供):我们将建立一种新生儿脑MRI定量方法,以评估早产儿的异常。 在美国,所有新生儿中约12%早产(<37周妊娠),其中2%为极早产(VPB,28-32周妊娠)。 在过去十年中,早产的比例一直在增加,部分原因是对早产儿的新生儿护理得到了改善。 然而,约有一半的VPB婴儿可能会出现临床上明显的神经或心理障碍,如果包括细微的功能异常,这个数字可能会更高。 晚期早产儿(妊娠33-36周)的神经认知缺陷程度也未知。 然而,大多数神经认知缺陷在生命的第一年不容易被发现。 为了从早期干预中获益并开发更多针对缺陷的干预措施,我们需要在早期阶段检测和量化大脑异常的方法。 磁共振成像是最有前途的和敏感的方法来检测微妙的解剖异常,在新生儿的大脑。 以前的脑MRI研究已经发现了几种类型的异常和神经系统结果之间的一些相关性,但也有报道发现信号改变和神经系统结果之间没有关系。 因此,现有知识不能证明MRI用于常规临床评价的合理性。 为了优化MRI在新生儿和儿科护理中的实用性,需要基于定量图像分析和功能相关性的系统研究。 所提出的方法是基于两个核心技术的新生儿脑解剖结构的量化:一个可变形的大脑图谱与详细的解剖信息和高度弹性的拓扑保留的翘曲方法。 该组合将提供来自176个自动分割的大脑结构的多个MR参数。 本研究的目的是建立一种基于图谱的新生儿脑的自动定量方法,以评估足月新生儿的详细解剖结构。 总体假设是,我们的DTI引导的定量脑分析将以区域特异性方式灵敏地检测早产新生儿的解剖异常。 我们有四个具体目标。 在目标1中,我们将创建一个多对比度(T1,T2加权和DTI)正常足月新生儿脑图谱,用于定量脑分析,这将是人口的统计表示(“贝叶斯图谱”)。 在目标2中,我们将联合收割机将贝叶斯图谱与高度弹性的拓扑保持变形(大变形拓扑度量映射,LDDMM)相结合,用于自动化脑分割并测试分割准确性。 在目标3中,我们将使用贝叶斯图谱和LDDMM的组合来执行足月新生儿脑MRI的T1/T2/DTI定量。 在目标4中,我们将该方法应用于足月早产儿(出生于28-36周胎龄)的脑MRI,并将MR参数与足月婴儿的MR参数进行比较。 这项研究将是寻找早产儿脑解剖异常功能结局的早期预后指标的第一步。
公共卫生关系:我们将建立一套新生儿脑部磁振造影自动化量化方法,以评估早产儿脑部解剖异常。 在美国,极早产儿的数量正在增加,部分原因是这些婴儿的新生儿重症监护得到了改善,其中约一半的婴儿患有神经或精神疾病。 我们相信,这一建议的MRI方法将提高诊断,从而早期干预治疗早产儿和儿科患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenichi Oishi其他文献
Kenichi Oishi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenichi Oishi', 18)}}的其他基金
Precision Medicine for Neonatal Hypoxic-Ischemic Encephalopathy: Combined Neuroimaging Clinical Approach to Link Phenotypes to Prognosis
新生儿缺氧缺血性脑病的精准医学:将表型与预后联系起来的联合神经影像学临床方法
- 批准号:
10557147 - 财政年份:2022
- 资助金额:
$ 47.64万 - 项目类别:
Precision Medicine for Neonatal Hypoxic-Ischemic Encephalopathy: Combined Neuroimaging Clinical Approach to Link Phenotypes to Prognosis
新生儿缺氧缺血性脑病的精准医学:将表型与预后联系起来的联合神经影像学临床方法
- 批准号:
10417856 - 财政年份:2022
- 资助金额:
$ 47.64万 - 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
- 批准号:
8893110 - 财政年份:2011
- 资助金额:
$ 47.64万 - 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
- 批准号:
8334037 - 财政年份:2011
- 资助金额:
$ 47.64万 - 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
- 批准号:
8700435 - 财政年份:2011
- 资助金额:
$ 47.64万 - 项目类别:
Development of quantitative MRI DTI analysis tool for preterm neonate
早产儿定量MRI DTI分析工具的开发
- 批准号:
8510698 - 财政年份:2011
- 资助金额:
$ 47.64万 - 项目类别:
Longitudinal and Cross-sectional White Matter Analysis of Alzheimer's Disease
阿尔茨海默病的纵向和横截面白质分析
- 批准号:
7845567 - 财政年份:2009
- 资助金额:
$ 47.64万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 47.64万 - 项目类别:
Research Grant