From Atoms to Planets

从原子到行星

基本信息

  • 批准号:
    ST/F003102/1
  • 负责人:
  • 金额:
    $ 552.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Our proposal, 'from atoms to planets', is a study of how the Solar System formed, how it has changed over billions of years, and how different processes eventually led to evolution of a planet capable of sustaining life. Approximately 4,600 million years ago, the Sun emerged from a collapsing molecular cloud. Through a series of complex processes (including accretion of dust, gas and ice in different relative quantities, depending on distance from the Sun, followed by coagulation, agglomeration, melting, separation into layers and solidification), the disk that circled the Sun gradually became the planets and their satellites, plus asteroids and comets. As the planets formed, they experienced alteration by melting ice and by heating, and then the effects of bombardment, collision, break-up, and re-formation. On one planet, Earth, water condensed and formed oceans, and life emerged. It is difficult to look back through all these processes to the original material from which the Solar System formed. We cannot study rocks from the Earth's surface, because they have been changed by geological and biological processing and are no longer representative of material that aggregated from the solar nebula. The timeline of events taking place during the early Solar System can only be determined by study of meteorites and dust collected in space and from comets. Our research programme is an integrated study of the physics, chemistry and biology of extraterrestrial materials. We investigate these materials in different ways: (1) by analysing meteorites, pieces of the Moon and Mars, and interplanetary and cometary dust in the laboratory, or (2) by making measurements using instruments on spacecraft of the surfaces of Solar System bodies such as the Moon and Mars, Titan (Saturn's giant moon), comets and asteroids. To complement the analytical and exploration aspects of our work, we perform laboratory simulations of the formation processes, and also develop computer models of how processes might have occurred. As well as using instruments to make measurements (either in the laboratory or on spacecraft), we also design and build equipment ourselves. We have been successful in launching instruments to Mars, to Titan and to a comet. Now we are designing equipment to send to the Moon and to Europa (Jupiter's icy satellite), in order to learn about the composition and structure of these very different bodies. We specialise in analysis of small amounts of material, often only a few grains that might only be a few microns in size. We use electron microscopes to take images of samples, and to learn their elemental composition, and what minerals are present. We also use different types of mass spectrometer to determine the isotopic and molecular composition of the material. We can get an amazing amount of information from the tiniest of grains / from which we can learn how our star and its planets formed. We know that there are many stars in the Galaxy orbited by planets, however, we still know only one place where life exists, and that is here on Earth. But our planet is not made from any particularly unusual materials, the star we orbit is quite ordinary, and for life forms such as ourselves, the relative proportions in our bodies of elements such as carbon, nitrogen and oxygen (for instance) are similar to those in stars (implying that we are, chemically speaking, not particularly unusual). As astronomers use ever-more sophisticated telescopes in attempts to uncover the details of the planetary systems that are closest to us, the microscopes we use on Earth to analyse relevant physically available materials are probing ever deeper into the details of our own planetary system. Eventually, we hope that by studying extraterrestrial materials, we will be able to understand how life began on Earth, and whether it has evolved elsewhere in the Solar System.
“从原子到行星”的计划研究了太阳系是如何形成的,它在数十亿年的时间里是如何变化的,以及不同的过程最终是如何导致一个能够维持生命的行星的进化的。大约46亿年前,太阳从一个坍缩的分子云中出现。经过一系列复杂的过程(包括根据与太阳的距离,以不同的相对数量吸积尘埃、气体和冰,然后凝结、凝聚、熔化、分离成层和固化),围绕太阳旋转的圆盘逐渐成为行星及其卫星,加上小行星和彗星。当行星形成时,它们经历了冰融化和加热的变化,然后是轰击,碰撞,分裂和重新形成的影响。在一个行星上,地球,水凝结形成海洋,生命出现了。很难通过所有这些过程回顾太阳系形成的原始材料。我们无法研究地球表面的岩石,因为它们已经被地质和生物过程改变,不再代表从太阳星云聚集的物质。太阳系早期发生的事件的时间轴只能通过研究太空和彗星收集的陨石和尘埃来确定。我们的研究方案是对地外物质的物理、化学和生物学进行综合研究。我们以不同的方式研究这些物质:(1)通过分析陨石,月球和火星的碎片,以及实验室中的行星际和彗星尘埃,或者(2)通过使用太阳系天体表面的航天器上的仪器进行测量,如月球和火星,泰坦(土星的巨大卫星),彗星和小行星。为了补充我们工作的分析和探索方面,我们对形成过程进行了实验室模拟,并开发了过程如何发生的计算机模型。除了使用仪器进行测量(无论是在实验室还是在航天器上)之外,我们还自己设计和制造设备。我们已经成功地向火星、土卫六和彗星发射了仪器。现在,我们正在设计设备发送到月球和木卫二(木星的冰冷卫星),以了解这些非常不同的机构的组成和结构。我们专注于少量材料的分析,通常只有几个颗粒,可能只有几微米的大小。我们使用电子显微镜拍摄样品的图像,并了解它们的元素组成以及存在的矿物质。我们还使用不同类型的质谱仪来确定材料的同位素和分子组成。我们可以从最微小的颗粒中获得惊人的信息量/从中我们可以了解我们的星星和它的行星是如何形成的。我们知道银河系中有许多恒星被行星环绕,然而,我们仍然只知道一个地方存在生命,那就是地球。但我们的星球并不是由任何特别不寻常的材料构成的,我们所围绕的星星也很普通,对于像我们这样的生命形式来说,我们体内的元素(例如碳、氮和氧)的相对比例与恒星中的相似(这意味着我们在化学上并不特别不寻常)。随着天文学家使用越来越复杂的望远镜试图揭示离我们最近的行星系统的细节,我们在地球上使用的显微镜分析相关的物理可用材料正在更深入地探索我们自己的行星系统的细节。最终,我们希望通过研究地外物质,我们将能够了解生命是如何在地球上开始的,以及它是否在太阳系的其他地方进化。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ar-Ar age and halogen characteristics of nakhlite MIL 03346: Records of crustal processes on Mars
Nakhlite MIL 03346 的 Ar-Ar 年龄和卤素特征:火星地壳过程的记录
HIGH-K GLASSES AND "KREEPY" CLASTS IN HOWARDITES: EVIDENCE FOR K-RICH TERRANE(S) ON 4 VESTA
霍华德岩中的高 K 玻璃和“令人毛骨悚然”的岩石:4 灶神星上富含 K 地层的证据
Geochemistry of diogenites: Still more diversity in their parental melts
  • DOI:
    10.1111/j.1945-5100.2008.tb00641.x
  • 发表时间:
    2008-11-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Barrat, J. A.;Yamaguchi, A.;Franchi, I. A.
  • 通讯作者:
    Franchi, I. A.
Trace element geochemistry of K-rich impact spherules from howardites
钙镁铝榴石富钾撞击球粒的微量元素地球化学
Special issue with papers from the ESLAB 2008 Symposium on 'Cosmic Cataclysms and Life'
ESLAB 2008 研讨会“宇宙灾难与生命”论文特刊
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Wright其他文献

453 Mapping of gray matter changes in schizophrenia
第453章 精神分裂症灰质变化图谱
  • DOI:
    10.1016/s0920-9964(97)82461-9
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ian Wright;Z. Ellison;T. Sharma;Karl J. Friston;P. McGuire
  • 通讯作者:
    P. McGuire
Record of fluidrock interactions on Mars from the meteorite ALH84001
陨石 ALH84001 记录火星上流体岩相互作用
  • DOI:
    10.1038/372655a0
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    C. Romanek;M. M. Grady;M. M. Grady;Ian Wright;D. Mittlefehldt;R. Socki;C. Pillinger;E. Gibson
  • 通讯作者:
    E. Gibson
Panoptes: web‐based exploration of large scale genome variation data
Panoptes:基于网络的大规模基因组变异数据探索
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Vauterin;Ben Jeffery;A. Miles;R. Amato;Lee Hart;Ian Wright;D. Kwiatkowski
  • 通讯作者:
    D. Kwiatkowski
ATTENUATIONS IN TISSUE DOPPLER-DERIVED LEFT VENTRICULAR SYSTOLIC VELOCITY PREDICT AN AMPLIFIED RISK OF LETHAL ARRHYTHMIAS IN ICD RECIPIENTS INDEPENDENTLY OF EJECTION FRACTION
  • DOI:
    10.1016/s0735-1097(13)60818-9
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Mohamad F. Barakat;Omar Chehab;Saj Hayat;Mihir Kelshiker;Hazel Turner;Karl Norrington;Klio Konstantinou;Zachary Whinnett;Michael Koa-Wing;Charlotte Manisty;Ian Wright;Shahnaz Jamil-Copley;Boon Lim;Nilesh Sutaria;Petros Nihoyannopoulos;David Lefroy;Jamil Mayet;Darrel P. Francis;David Wyn Davies;Nicholas Peters
  • 通讯作者:
    Nicholas Peters
On the attempts to measure water (and other volatiles) directly at the surface of a comet
尝试直接在彗星表面测量水(和其他挥发物)

Ian Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Wright', 18)}}的其他基金

Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage
量化和监测地质碳储存对生态系统的潜在影响
  • 批准号:
    NE/H013873/1
  • 财政年份:
    2010
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Research Grant
Rosetta Post Launch Support 2009 - 2012
Rosetta 发布后支持 2009 - 2012
  • 批准号:
    ST/H004432/1
  • 财政年份:
    2009
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Research Grant

相似海外基金

Imaging the youngest planets
对最年轻的行星进行成像
  • 批准号:
    DP240103290
  • 财政年份:
    2024
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Discovery Projects
RII Track-4:NSF: Assessing the Impact of Jovian Planets on the Existence of Potentially Habitable Planets
RII Track-4:NSF:评估木星行星对潜在宜居行星存在的影响
  • 批准号:
    2327072
  • 财政年份:
    2024
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Standard Grant
Lifting the Veil on Cold Planets in the Inner Galaxy
揭开内星系寒冷行星的面纱
  • 批准号:
    DP240101842
  • 财政年份:
    2024
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Discovery Projects
Binary stars and Planets
双星和行星
  • 批准号:
    DP240103174
  • 财政年份:
    2024
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Discovery Projects
CAREER: How does external photoevaporation shape planets?
职业:外部光蒸发如何塑造行星?
  • 批准号:
    2339164
  • 财政年份:
    2024
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Continuing Grant
Observations and methods to discover circumbinary planets
发现绕双星行星的观测和方法
  • 批准号:
    2886685
  • 财政年份:
    2023
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Studentship
Stars and planets through time
穿越时空的恒星和行星
  • 批准号:
    2758954
  • 财政年份:
    2023
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Studentship
Fundamental Processes at Giant Planets in the Solar System and Beyond: Global heating and Saturn's Raining Rings
太阳系及其他地区巨行星的基本过程:全球变暖和土星雨环
  • 批准号:
    ST/X003426/1
  • 财政年份:
    2023
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Fellowship
Unseen Architectures: Revealing Low Mass Planets on Long Period Orbits
看不见的结构:揭示长周期轨道上的低质量行星
  • 批准号:
    2307467
  • 财政年份:
    2023
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Standard Grant
Magnetohydrodynamic Simulations Revealing Formation Process of Terrestrial Planets in Protoplanetary Disks
磁流体动力学模拟揭示了原行星盘中类地行星的形成过程
  • 批准号:
    22KJ0155
  • 财政年份:
    2023
  • 资助金额:
    $ 552.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了