The regulation of autophagy pathways in eukaryotic cells
真核细胞自噬途径的调控
基本信息
- 批准号:8184596
- 负责人:
- 金额:$ 30.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-04-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AutophagocytosisBiologicalBiologyCell SurvivalClinicalComplexCrohn&aposs diseaseCyclic AMP-Dependent Protein KinasesDiseaseDrug Delivery SystemsEnzymesEukaryotaEukaryotic CellEventGeneticGoalsGrowthHealthHumanHuntington DiseaseLightLinkLipidsMalignant neoplasm of ovaryMammalsMediatingMembrane Protein TrafficMetabolismMicroscopyModificationMolecularMolecular BiologyNatural ImmunityOrganellesOrganismPathway interactionsPhosphatidylinositolsPhosphorylationPhosphotransferasesPhysiologicalProcessProtein KinaseProteinsRegulationRestRoleSaccharomyces cerevisiaeSignal PathwaySignal TransductionTestingTherapeuticTherapeutic InterventionTumor SuppressionWorkYeastsdrug discoveryenzyme substrateinsightinterestmalignant breast neoplasmnervous system disordernovelphosphatidylinositol 3,5-diphosphateprotein complexresearch studystemtherapeutic target
项目摘要
DESCRIPTION (provided by applicant): We are interested in developing a better understanding of the biology of the non-dividing resting states that eukaryotic cells enter when conditions are not conducive to continued growth. One of our primary goals is to define how the processes that are induced during these periods of quiescence are regulated and how they contribute to general cell survival. This proposal is focused upon a set of related pathways, known collectively as autophagy, that are required for this survival. Autophagy pathways are responsible for the turnover of cytoplasmic material, including bulk protein and damaged or superfluous organelles. This autophagy-mediated degradation has been linked to a variety of processes relevant to human health, including tumor suppression, innate immunity and neurological disorders, such as Huntington's disease. In many of these conditions, the autophagy pathway is being considered as a major point of therapeutic intervention. It is therefore critical that we develop a thorough understanding of the mechanisms normally controlling autophagy in eukaryotic cells. This proposal will examine two key aspects of the regulation of autophagy in the yeast, Saccharomyces cerevisiae. Studies with this organism have contributed tremendously to our basic understanding of autophagy in all eukaryotes, including humans. First, a combination of approaches will be used to characterize the autophagy process induced by the inactivation of the cAMP-dependent protein kinase (PKA) signaling pathway. Our preliminary work indicates that this PKA-regulated process may be similar to an alternative form of macroautophagy recently identified in mammals. The experiments here will explore this possibility and define the molecular machineries governing this PKA-regulated pathway. These studies will also characterize a potential role for the phosphoinositide, PtdIns (3,5)P2, in this PKA-regulated macroautophagy. The second major goal of this proposal is the identification of the substrates of the Atg1 protein kinase. Atg1 is a key regulatory target within the autophagy machinery and identifying the targets of this enzyme represents one of the major goals in the autophagy field today. In all, we feel that the completion of this work will provide important insights into the manner in which autophagy is controlled in eukaryotic cells, insights that should facilitate efforts to manipulate this pathway in clinically beneficial ways. The specific aims in this proposal are: (1) to characterize the autophagy pathway induced upon inactivation of PKA signaling; (2) to characterize the link between PKA signaling, phosphoinositide metabolism and the regulation of autophagy; and (3) to identify and characterize substrates of the Atg1 protein kinase.
PUBLIC HEALTH RELEVANCE: This proposal aims to further our understanding of a process known as autophagy that has been linked to a number of serious human ailments, including breast and ovarian cancer, Crohn's disease and neurological disorders, such as Huntington's disease. Interestingly, drugs that target autophagy are being developed as potential therapeutics for many of these conditions. By increasing our understanding of the normal control of the autophagy process, the work here would provide potentially novel avenues for this drug discovery process.
描述(由申请人提供):我们有兴趣更好地了解真核细胞在不利于持续生长的条件下进入的非分裂静息状态的生物学。我们的主要目标之一是确定在这些静止时期诱导的过程是如何被调节的,以及它们如何促进一般细胞存活。这一建议的重点是一组相关的途径,统称为自噬,这是生存所必需的。自噬途径负责细胞质物质的周转,包括大量蛋白质和受损或多余的细胞器。这种自噬介导的降解与多种与人类健康相关的过程有关,包括肿瘤抑制、先天免疫和神经系统疾病,如亨廷顿舞蹈病。在许多这些情况下,自噬途径被认为是治疗干预的一个主要点。因此,我们对真核细胞中正常控制自噬的机制有一个透彻的了解是至关重要的。本提案将研究酵母自噬调节的两个关键方面,酿酒酵母。对这种生物的研究极大地促进了我们对包括人类在内的所有真核生物自噬的基本认识。首先,将采用多种方法来描述由camp依赖性蛋白激酶(PKA)信号通路失活诱导的自噬过程。我们的初步工作表明,这种pka调控的过程可能类似于最近在哺乳动物中发现的另一种形式的巨噬。这里的实验将探索这种可能性,并定义控制这种pka调控途径的分子机制。这些研究还将描述磷酸肌肽PtdIns (3,5)P2在pka调控的巨噬过程中的潜在作用。本提案的第二个主要目标是鉴定Atg1蛋白激酶的底物。Atg1是自噬机制中的一个关键调控靶点,确定该酶的靶点是当今自噬领域的主要目标之一。总之,我们认为这项工作的完成将为真核细胞中自噬的控制方式提供重要的见解,这些见解应该有助于以临床有益的方式操纵这一途径。本文的具体目的是:(1)表征PKA信号失活诱导的自噬途径;(2)研究PKA信号、磷酸肌肽代谢和自噬调节之间的联系;(3)鉴定和表征Atg1蛋白激酶的底物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul K Herman其他文献
Paul K Herman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul K Herman', 18)}}的其他基金
An analysis of the regulation and functions of a novel family of membraneless organelles in eukaryotic cells
真核细胞新型无膜细胞器家族的调控和功能分析
- 批准号:
10736346 - 财政年份:2018
- 资助金额:
$ 30.88万 - 项目类别:
An analysis of the regulation and functions of a novel family of membraneless organelles in eukaryotic cells
真核细胞新型无膜细胞器家族的调控和功能分析
- 批准号:
9915939 - 财政年份:2018
- 资助金额:
$ 30.88万 - 项目类别:
The regulation and function of cytoplasmic foci in quiescent cells
静止细胞胞质灶的调控和功能
- 批准号:
8439585 - 财政年份:2013
- 资助金额:
$ 30.88万 - 项目类别:
The regulation and function of cytoplasmic foci in quiescent cells
静止细胞胞质灶的调控和功能
- 批准号:
8788369 - 财政年份:2013
- 资助金额:
$ 30.88万 - 项目类别:
The regulation and function of cytoplasmic foci in quiescent cells
静止细胞胞质灶的调控和功能
- 批准号:
8598912 - 财政年份:2013
- 资助金额:
$ 30.88万 - 项目类别:
Ras protein signaling and the control of cell growth
Ras 蛋白信号传导和细胞生长的控制
- 批准号:
7920743 - 财政年份:2009
- 资助金额:
$ 30.88万 - 项目类别:
Ras protein signaling and the control of cell growth
Ras 蛋白信号传导和细胞生长的控制
- 批准号:
6459208 - 财政年份:2002
- 资助金额:
$ 30.88万 - 项目类别:
Ras protein signaling and the control of cell growth
Ras 蛋白信号传导和细胞生长的控制
- 批准号:
7533495 - 财政年份:2002
- 资助金额:
$ 30.88万 - 项目类别:
The regulation of autophagy pathways in eukaryotic cells
真核细胞自噬途径的调控
- 批准号:
8309101 - 财政年份:2002
- 资助金额:
$ 30.88万 - 项目类别:
Ras protein signaling and the control of cell growth
Ras 蛋白信号传导和细胞生长的控制
- 批准号:
7189808 - 财政年份:2002
- 资助金额:
$ 30.88万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 30.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 30.88万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 30.88万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 30.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




