Health risk assessment using real time clinical data

使用实时临床数据进行健康风险评估

基本信息

项目摘要

DESCRIPTION (provided by applicant): Advances in health information technology significantly improve our ability to identify population based health status and clinical need through more accurate, timely and clinically relevant measures. The tools and instruments that are now used most often by private and public insurance sponsors and others interested in adjusting financial or clinical quality and performance data rely on proxy measures of health status such as diagnoses, pharmacy data or procedures, usually captured from claims or other administrative data sources. These instruments and the risk assessments derived from them are used to adjust health plan or provider payments and physician profiles for quality assessments among other uses. The foundation of each model is that diagnoses or pharmacy dispenses generated from claims or administrative data serve as a signal of underlying health status and can be used to explain current or predict future health care use. Models that rely on these data were developed because until recently it has been impractical or too costly to capture markers of actual clinical status from clinical records on a population basis. However adoption of electronic medical records, which include clinical data previously not available for large populations has the potential to change the ways we assess population based risk and apply these assessment to adjusting clinical performance and health plan and provider payments. We propose to develop and test a risk assessment model that uses real time clinical data from an electronic medical record. We will test the hypothesis that the ability to assess population risk using clinical expressions of medical need will be more accurate than measures derived purely from diagnostic or pharmacy data and be more relevant in guiding clinical practice. PUBLIC HEALTH RELEVANCE: We propose to develop, test, and validate a population based risk assessment model using primarily real time clinical and diagnostic data obtained from electronic medical records, supplemented with self reported information on health behaviors. Advances in health information technology create opportunities to estimate population based risk using more complete data on health status and health outcomes. Risk models based on real time clinical data will be more accurate with respect to their ability to explain and predict medical care need as well as more closely aligned with clinical practice.
描述(由申请人提供):卫生信息技术的进步显著提高了我们通过更准确、及时和临床相关的措施确定基于人群的健康状况和临床需求的能力。私人和公共保险赞助商以及其他有兴趣调整财务或临床质量和绩效数据的人现在最常使用的工具和手段依赖于健康状况的替代指标,如诊断、药房数据或程序,通常从索赔或其他行政数据来源获取。这些工具和由此得出的风险评估用于调整保健计划或提供者付款和医生概况,以进行质量评估等。每个模型的基础是,从索赔或管理数据中生成的诊断或药房配药作为潜在健康状况的信号,可用于解释当前或预测未来的医疗保健使用。开发依赖于这些数据的模型是因为直到最近,从基于人群的临床记录中捕获实际临床状态的标记物是不切实际的或成本太高。然而,采用电子病历(包括以前无法用于大规模人群的临床数据)有可能改变我们评估基于人群的风险的方式,并将这些评估应用于调整临床表现和健康计划以及提供者支付。我们建议开发和测试一个风险评估模型,该模型使用电子病历中的真实的临床数据。我们将检验以下假设,即使用医疗需求的临床表达评估人群风险的能力将比纯粹从诊断或药学数据得出的措施更准确,并且在指导临床实践方面更相关。 公共卫生关系:我们建议开发、测试和验证一个基于人群的风险评估模型,该模型主要使用从电子病历中获得的真实的临床和诊断数据,并辅以自我报告的健康行为信息。卫生信息技术的进步创造了利用更完整的健康状况和健康结果数据估计基于人口的风险的机会。基于真实的时间临床数据的风险模型在解释和预测医疗护理需求的能力方面将更加准确,并且与临床实践更加一致。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL A FISHMAN其他文献

PAUL A FISHMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL A FISHMAN', 18)}}的其他基金

Estimating the Cost of a Medical Home Transformation
估算医疗之家改造的成本
  • 批准号:
    8627466
  • 财政年份:
    2013
  • 资助金额:
    $ 16.4万
  • 项目类别:
Health risk assessment using real time clinical data
使用实时临床数据进行健康风险评估
  • 批准号:
    8325048
  • 财政年份:
    2011
  • 资助金额:
    $ 16.4万
  • 项目类别:
Long Term Cost and Outcomes of Breast Cancer Screening
乳腺癌筛查的长期成本和结果
  • 批准号:
    7015078
  • 财政年份:
    2004
  • 资助金额:
    $ 16.4万
  • 项目类别:
Long Term Cost and Outcomes of Breast Cancer Screening
乳腺癌筛查的长期成本和结果
  • 批准号:
    6762243
  • 财政年份:
    2004
  • 资助金额:
    $ 16.4万
  • 项目类别:
Long Term Cost and Outcomes of Breast Cancer Screening
乳腺癌筛查的长期成本和结果
  • 批准号:
    6861692
  • 财政年份:
    2004
  • 资助金额:
    $ 16.4万
  • 项目类别:
Assessing Medical Need Among Children in Managed Care
评估管理式护理中儿童的医疗需求
  • 批准号:
    6638858
  • 财政年份:
    2001
  • 资助金额:
    $ 16.4万
  • 项目类别:
Assessing Medical Need Among Children in Managed Care
评估管理式护理中儿童的医疗需求
  • 批准号:
    6323067
  • 财政年份:
    2001
  • 资助金额:
    $ 16.4万
  • 项目类别:
Assessing Medical Need Among Children in Managed Care
评估管理式护理中儿童的医疗需求
  • 批准号:
    6538186
  • 财政年份:
    2001
  • 资助金额:
    $ 16.4万
  • 项目类别:

相似国自然基金

多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
  • 批准号:
    2410889
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
  • 批准号:
    MR/X032922/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
  • 批准号:
    DP240102605
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
  • 批准号:
    2343506
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
  • 批准号:
    24K16033
  • 财政年份:
    2024
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
  • 批准号:
    2345898
  • 财政年份:
    2023
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了