Gesture Based Medication Adherence Confirmation for Clinical Trials

临床试验中基于手势的药物依从性确认

基本信息

  • 批准号:
    8199012
  • 负责人:
  • 金额:
    $ 27.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-06 至 2013-03-05
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Ai Cure Technologies LLC, was established in 2009 to develop webcam software solutions for mobile devices and other computing platforms that automate and reduce the cost of monitoring patient behavior and medication adherence. Poor medication adherence is one of the healthcare system's greatest challenges. More than two million serious adverse events and about 100,000 deaths occur annually due to this problem. Total US healthcare costs of drug-related morbidity, including poor adherence, are estimated at $290 billion per year. In clinical trials, adherence levels for populations with chronic conditions range from 43% to 78%, the high cost of clinical trials being partly attributable to inefficiencies created by poor adherence. As clinical trials become larger, and more move outside the US, tracking patient behavior becomes more difficult, as does the burden on the FDA to monitor these sites. Traditional monitoring methods such as pill counting, patient interviews, and blood work have proven unreliable. Indeed, a recent clinical trial employing these traditional monitoring methods was confirmed to have failed for poor medication adherence. Products such as smart blister packs and MEMS caps are costly and do not confirm medication has been taken. Direct observation therapy is effective to confirm medication adherence; but is labor-intensive, patient intrusive, and expensive. Ai Cure Technologies will provide a webcam software solution for distribution by clinical trial sponsors to automate direct observation of medication administration and provide an audit trail of medication adherence. The solution will provide reliable data to the research community and policy-makers to improve overall health outcomes and rein in soaring costs. The solution will also act as a tool for the FDA to better regulate trials before drugs come to market. PUBLIC HEALTH RELEVANCE: In clinical trials, whether or not participants take their prescribed medication and to what degree is neither well understood nor reliably monitored through existing and antiquated methods such as pill counting or patient interviews. This means that it is difficult to provide an accurate assessment on drug efficacy or safety within a prescribed regimen and over the course of a clinical trial. AiView will provide a system for automatically determining medication adherence of clinical trial patients, and allow access to this data by clinical trial managers.
描述(申请人提供):AI Cure Technologies LLC成立于2009年,旨在为移动设备和其他计算平台开发网络摄像头软件解决方案,以自动化并降低监测患者行为和服药依从性的成本。服药依从性差是医疗体系面临的最大挑战之一。由于这个问题,每年发生200多万起严重不良事件,约10万人死亡。据估计,美国每年因药物相关疾病(包括依从性差)而产生的医疗总成本为2900亿美元。在临床试验中,慢性病患者的依从性水平从43%到78%不等,临床试验的高成本部分归因于依从性差造成的效率低下。随着临床试验变得更大,更多的试验转移到美国以外,跟踪患者行为变得更加困难,FDA监测这些地点的负担也变得更加困难。传统的监测方法,如药片计数、患者访谈和血液检查已被证明是不可靠的。事实上,最近一项使用这些传统监测方法的临床试验被证实因服药依从性差而失败。智能泡罩包装和MEMS盖子等产品价格昂贵,而且不能确认是否已经服用了药物。直接观察疗法是确认服药依从性的有效方法,但劳动密集型、患者侵入性和费用昂贵。AI Cure Technologies将提供一个网络摄像头软件解决方案,供临床试验赞助商分发,以自动直接观察用药情况,并提供用药依从性的审计跟踪。该解决方案将为研究界和政策制定者提供可靠的数据,以改善整体健康结果并控制飙升的成本。该解决方案还将成为FDA在药物上市前更好地监管试验的工具。 与公共卫生相关:在临床试验中,参与者是否服用处方药物以及服用程度如何,既不能很好地理解,也不能通过现有的过时方法(如药片计数或患者访谈)进行可靠监测。这意味着,在规定的方案内和临床试验过程中,很难提供对药物有效性或安全性的准确评估。AiView将提供一个自动确定临床试验患者服药依从性的系统,并允许临床试验经理访问这些数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Hanina其他文献

Adam Hanina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Hanina', 18)}}的其他基金

A Digital Therapeutic for Pain Relief through AI-Guided Visual Stimulation
通过人工智能引导视觉刺激缓解疼痛的数字疗法
  • 批准号:
    10561374
  • 财政年份:
    2021
  • 资助金额:
    $ 27.32万
  • 项目类别:
A Digital Therapeutic for Pain Relief through AI-Guided Visual Stimulation
通过人工智能引导视觉刺激缓解疼痛的数字疗法
  • 批准号:
    10325724
  • 财政年份:
    2021
  • 资助金额:
    $ 27.32万
  • 项目类别:
Automating Directly Observed Therapy as a Platform Technology
将直接观察治疗自动化作为平台技术
  • 批准号:
    8524716
  • 财政年份:
    2013
  • 资助金额:
    $ 27.32万
  • 项目类别:
Automating Directly Observed Therapy as a Platform Technology
将直接观察治疗自动化作为平台技术
  • 批准号:
    8670794
  • 财政年份:
    2013
  • 资助金额:
    $ 27.32万
  • 项目类别:
Funding of Phase II SBIR Contract. N44 DA-12-2227
第二阶段 SBIR 合同的资金。
  • 批准号:
    8756304
  • 财政年份:
    2013
  • 资助金额:
    $ 27.32万
  • 项目类别:
Fractal Identification System for Medication
药物分形识别系统
  • 批准号:
    8394091
  • 财政年份:
    2012
  • 资助金额:
    $ 27.32万
  • 项目类别:
OTHER FUNCTIONS: SBIR PHASE I, "MED. ADHERENCE IN HIGHER RISK POPULATIONS," N43D
其他功能:SBIR 第一阶段,“医学。高风险人群的依从性”,N43D
  • 批准号:
    8554527
  • 财政年份:
    2012
  • 资助金额:
    $ 27.32万
  • 项目类别:

相似海外基金

An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 27.32万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了