NEW STATISTICAL METHODS FOR CANCER SURVEILLANCE
癌症监测的新统计方法
基本信息
- 批准号:8132890
- 负责人:
- 金额:$ 15.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsCancer Prevention InterventionCessation of lifeCharacteristicsComplexComputer softwareDataData AnalysesDetectionDiseaseDisease ClusteringsEnvironmental HealthFailureGeneticGenetic Predisposition to DiseaseGoalsHealth PolicyHealth SciencesIncidenceIndividualLassoLinear ProgrammingLinkMalignant NeoplasmsMalignant neoplasm of prostateMethodologyMethodsModelingModern MedicineMonitorMultiple Cancer SitesObservational StudyOutcomePatientsPatternPlayPolicy MakerPopulationPopulations at RiskProxyRecording of previous eventsResearchResearch PersonnelResortResource AllocationRisk FactorsRoleSamplingSignal TransductionSpatial DistributionStatistical MethodsSurveillance MethodsSurvival AnalysisTaiwanTechniquesTestingTimebaseburden of illnesscancer sitedensityflexibilityleukemiamarkov modelmortalitynovelresidencestatisticsstemsurveillance datasurveillance studytheoriestrenduser-friendly
项目摘要
PROVIDED.
Cancer surveillance plays an essential role in cancer prevention and intervention. This proposal develops
new statistical methods that deal with complex data-related issues in cancer surveillance studies. In
particular, the specific aims are motivated by problems encountered in surveillance studies that monitor
cancer mortality and geographical patterns, and that study disproportionate disease burden on particular
populations and important risk factors. We plan to
(1) develop new methods to analyze the cross-relationship matrix of the change trends [e.g. the annual rate
changes (ARC)] in mortality or incidence on multiple cancer sites for the period of 1969-2004;
(2) propose disease clustering/surveillance methods for outcomes subject to censoring;
(3) propose a new test statistic for spatial clustering detection that incorporates latency distributions that
are associated with cancer, and studies whether disease clustering patterns differ according to genetic
characteristics;
(4) develop and evaluate a spatio-temporal hidden Markov model for disease surveillance based on regionspecific
counts of disease incidence;
(5) develop efficient algorithms and user-friendly statistical software that implement these methods with the
goal of disseminating them to health science researchers.
The proposed methods will be applied to several cancer and environmental health projects that the
investigators have been involved in, namely, the SEER cancer mortality data, the SEER prostate cancer
incidence data and the Taiwan Leukemia data. The methods will allow practitioners as well as health care
policy makers to better understand the change trends of cancer deaths/incidence and the cross-relationship
of these trends for the purpose of planning and resource allocation. The methods will also help reveal
disproportionate disease burden on at-risk populations and identify important risk factors, including genetic
susceptibility. The surveillance methods proposed in this project are linked to the spatio-temporal methods
proposed in Project 1, and the regularized regression models proposed in this project are related to the
variable selection methods proposed in Project 3. In addition, all three projects have a common theme of the
analysis of high-dimensional observational study data, and all projects will generate statistical methods and
computational approaches that will inform those developed in the others.
提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Li其他文献
Yi Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Li', 18)}}的其他基金
Mutating E-cadherin in rats to model lobular breast cancer
突变大鼠 E-钙粘蛋白以模拟小叶乳腺癌
- 批准号:
10830164 - 财政年份:2022
- 资助金额:
$ 15.56万 - 项目类别:
Next Generation Rat Models of ER+ Breast Cancer
下一代 ER 乳腺癌大鼠模型
- 批准号:
10591512 - 财政年份:2022
- 资助金额:
$ 15.56万 - 项目类别:
Next Generation Rat Models of ER+ Breast Cancer
下一代 ER 乳腺癌大鼠模型
- 批准号:
10464834 - 财政年份:2022
- 资助金额:
$ 15.56万 - 项目类别:
New Statistical Methods for Modelling Cancer Outcomes
癌症结果建模的新统计方法
- 批准号:
10542801 - 财政年份:2021
- 资助金额:
$ 15.56万 - 项目类别:
New Statistical Methods for Modelling Cancer Outcomes
癌症结果建模的新统计方法
- 批准号:
10317123 - 财政年份:2021
- 资助金额:
$ 15.56万 - 项目类别:
CSF Clearance in Sporadic Alzheimer's Disease
散发性阿尔茨海默病的脑脊液清除率
- 批准号:
10606516 - 财政年份:2019
- 资助金额:
$ 15.56万 - 项目类别:
CSF Clearance in Sporadic Alzheimer's Disease
散发性阿尔茨海默病的脑脊液清除率
- 批准号:
9981182 - 财政年份:2019
- 资助金额:
$ 15.56万 - 项目类别:
CSF Clearance in Sporadic Alzheimer's Disease
散发性阿尔茨海默病的脑脊液清除率
- 批准号:
9993210 - 财政年份:2019
- 资助金额:
$ 15.56万 - 项目类别:
CSF Clearance in Sporadic Alzheimer's Disease
散发性阿尔茨海默病的脑脊液清除率
- 批准号:
10390277 - 财政年份:2019
- 资助金额:
$ 15.56万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Research Grant