PATHOLOGY MISS RATE RISK REDUCTION IN DIAGNOSTIC SMALL BOWEL CAPSULE ENDOSCOPY
降低诊断性小肠胶囊内窥镜病理学漏检率风险
基本信息
- 批准号:8057895
- 负责人:
- 金额:$ 17.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-24 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmericanAttentionBloodCategoriesClassificationClassification SchemeClinicalCommunity PhysicianComputer softwareCrohn&aposs diseaseDataData SetDatabasesDeformityDetectionDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiagnostic ProcedureDiseaseEndoscopyEvaluationFamilyFatigueGastroenterologistGastrointestinal tract structureGoalsHemorrhageHourHumanImageImageryLesionLiquid substanceMachine LearningMalignant NeoplasmsMethodologyMethodsMetricOperative Surgical ProceduresOutcomePathologyPatientsPhasePhysiciansPolypsPopulationProbabilityProceduresProcessReadabilityReaderReadingResearchRiskRisk ReductionSeveritiesSmall IntestinesSorting - Cell MovementSpeedStagingSystemTechniquesTechnologyTestingTimeTrainingTraining SupportUlcerWorkbasecapsuleclinically relevantclinically significantcostexperiencegastrointestinalimage processingimprovedinnovationinterestprospectiveprototypetumor
项目摘要
DESCRIPTION (provided by applicant): Well trained, experienced gastroenterologists in academic and high volume settings can reliably recognize 97% of pathologies in Capsule Endoscopy (CE) video. However, community physicians and infrequent users may miss up to 20%. The end goal of our proposed new line of research is to develop clinical software that provides automatic decision support to physicians who are trying to declare that a patient is pathology free or has a certain disease process. The risk for the physician - and their patients - is that of a less than optimal clinical outcome due to: 1) missing a lesion/pathology in the video and putting the patient at risk of developing a more serious condition over time, or 2) mistakenly "identifying" a pathology that is not present and thus subjecting the patient to unnecessary further diagnostic or surgical procedures. The research aims in this proposal will enable Ikona to create a pathology prioritization image processing module. Implementing modern machine learning techniques such as Support Vector Machines (SVM) and Adaboost methodologies together with proprietary image feature analysis, this technology will assign a probability metric to every frame in the image sequence for specific pathology (lesions, ulcers, bleeding, etc) and the major landmarks in the GI tract (ileo-cecal valve, pyloric valve etc.). Filtering and sorting endoscopy image data will be done such that the images with the highest probability of containing pathology will be presented to the reviewer first. This pathology prioritized sequencing is not intended to replace the clinician in the workflow, but rather to allow the clinician to focus more time on frames with a higher potential of containing pathology. Often times, clinically significant pathology may only be present in a single frame. A single "pathological" frame in the middle of a 50,000 frame sequence can easily be overlooked by a novice reviewer or a reviewer whose attention is temporarily distracted. With our proposed pathology prioritization, that single pathological frame will be identified and sorted near the beginning of the image sequence thus greatly increasing the likelihood of detection by the reviewer. Specifically for Phase I, we plan to investigate and develop different algorithms for classifying image frames and recognizing pathological and normal frames, and, algorithms for ranking frames by severity of pathology. Following the implementation of a working prototype, we will further test the clinical utility of these algorithms with human clinical capsule endoscopy videos.
PUBLIC HEALTH RELEVANCE: Capsule Endoscopy (CE) is widely used for assessing the small intestine in obscure gastrointestinal bleeding. Experienced gastroenterologists miss 2-3% of pathologies in part due to fatigue from reviewing 50,000 frames per CE video. Less experienced reviewers miss up to 20%. We propose to reduce the risk of false negatives by developing clinical image processing software to automatically re-order the CE video frames, ranking them by the probability they contain pathology.
描述(由申请人提供):在学术和高容量环境中,训练有素、经验丰富的胃肠病学家可以可靠地识别胶囊式内窥镜(CE)视频中97%的病理。然而,社区医生和不经常使用者可能会错过高达20%。我们提出的新研究路线的最终目标是开发临床软件,为试图宣布患者无病理或具有某种疾病过程的医生提供自动决策支持。医生及其患者的风险是由于以下原因导致的不太理想的临床结果:1)在视频中遗漏病变/病理,并使患者处于随着时间推移发展更严重状况的风险中,或2)错误地“识别”不存在的病理,从而使患者经历不必要的进一步诊断或外科手术。 本提案中的研究目标将使Ikona能够创建病理优先级图像处理模块。通过实施支持向量机(SVM)和Adaboost方法等现代机器学习技术以及专有图像特征分析,该技术将为特定病理(病变、溃疡、出血等)和胃肠道主要标志(回盲瓣、幽门瓣等)的图像序列中的每帧分配概率度量。将对内窥镜图像数据进行过滤和分类,以便将包含病理的概率最高的图像首先呈现给审查员。 这种病理优先排序并不旨在取代工作流程中的临床医生,而是允许临床医生将更多时间集中在具有更高包含病理可能性的帧上。通常情况下,具有临床意义的病理可能仅存在于单个帧中。50,000帧序列中间的单个“病态”帧很容易被新手审阅者或注意力暂时分散的审阅者忽略。通过我们提出的病理优先化,单个病理帧将在图像序列的开始附近被识别和排序,从而大大增加了审查者检测到的可能性。 特别是对于第一阶段,我们计划研究和开发不同的算法,用于分类图像帧和识别病理和正常帧,以及按病理严重程度对帧进行排名的算法。在实现工作原型之后,我们将进一步测试这些算法在人类临床胶囊内窥镜视频中的临床实用性。
公共卫生相关性:胶囊式内窥镜(CE)广泛用于评估不明原因消化道出血的小肠。经验丰富的胃肠病学家错过了2-3%的病理,部分原因是由于每个CE视频审查50,000帧的疲劳。经验不足的评论者错过了高达20%。我们建议通过开发临床图像处理软件来自动重新排序CE视频帧,并根据其包含病理的概率对其进行排名,从而降低假阴性的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcus Filipovich其他文献
Marcus Filipovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcus Filipovich', 18)}}的其他基金
Intelligent Image Feature Matching for Small Intestine Capsule Endoscopy
小肠胶囊内窥镜智能图像特征匹配
- 批准号:
7326378 - 财政年份:2007
- 资助金额:
$ 17.68万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 17.68万 - 项目类别:
Continuing Grant














{{item.name}}会员




