Brain Plasticity and Local Sleep Homeostasis: An Electrophysiological Perspective
大脑可塑性和局部睡眠稳态:电生理学视角
基本信息
- 批准号:7991360
- 负责人:
- 金额:$ 4.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-01 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAreaBiological ProcessBrainCerebral cortexCognitionComputersConsumptionDiseaseElectroencephalographyEventGoalsHealthHomeostasisHumanInvestigationLeadLearningLifeLinkLocationMagnetic Resonance ImagingMemoryMental disordersMentorsMetabolicMiddle InsomniaMoodsNeurobiologyNeuronsNoiseParietal LobePerformancePlasticsPlayProcessRegulationRoleRotationSignal TransductionSleepSleep DeprivationSleep DisordersSlow-Wave SleepStage II SleepStimulusSynapsesSynaptic plasticityTestingTherapeuticTimeWakefulnessWeightawakebasecomputerizedcostdensitydeprivationdesignhuman subjectkinematicsmotor controlnervous system disorderneural circuitnon rapid eye movementpressurepreventresearch studysleep regulationsocialvisual motor
项目摘要
DESCRIPTION (provided by applicant): We spend a third of our life asleep, and even partial sleep deprivation has serious consequences on cognition, mood, and health, suggesting that sleep must serve some fundamental functions. Presently, we lack a neurobiological understanding of what these functions might be. We know that sleep is tightly regulated as a function of prior wakefulness and sleep pressure is reflected by the amount of slow wave activity (SWA) in the EEG of non-rapid eye movement (NREM) sleep. SWA (the EEG power density between 0.5 and 4.5 Hz) increases in proportion to the time spent awake and decreases during sleep, but why this is the case remains unclear. The overall goal of this proposal is to test a recent hypothesis concerning the function of NREM sleep - the synaptic homeostasis hypothesis (SHY). The hypothesis states that plastic processes during wakefulness result in a net increase in synaptic strength in many brain circuits; such increased synaptic weight comes at the expense of increased metabolic consumption. Strengthened brain circuits lead to larger SWA during subsequent sleep. In turn, sleep SWA renormalizes synaptic strength to a baseline level that is energetically sustainable and beneficial for memory and performance. This proposal will test two predictions of SHY: sleep slow waves are necessary for the renormalization of cortical circuits after learning (Aim 1); and sleep slow waves are necessary for the enhancement of performance after sleep (Aim 2). To do so, I will use high density EEG recordings in humans while performing a visuomotor learning task (rotation learning) that involves right parietal cortex and during post learning sleep. Sleep slow waves will be suppressed using mild acoustic stimuli that do not fragment sleep. Control experiments will apply the same number of stimuli during stage 2 sleep. The specific aims are designed to evaluate if, as predicted by SHY, learning leaves a local trace in the waking EEG that is renormalized after sleep, and if the selective deprivation of sleep slow waves leads to a persistence of such EEG traces and to a suppression of post-sleep performance enhancement. PUBLIC HEALTH RELEVANCE: There is overwhelming evidence that restorative sleep is necessary to human health, that sleep deprivation and restriction have enormous social costs, and that sleep disorders are extremely common and are frequently associated with psychiatric and neurological disorders. By tying brain plasticity and performance to SWA, the results of this investigation will advance our understanding of the function of sleep at a fundamental level, lend support to SHY, and provide a rational basis for designing therapeutic approaches that focus on the quality of SWA and enhance the restorative effects of sleep in health and disease.
我们一生中有三分之一的时间是在睡眠中度过的,即使是部分睡眠不足也会对认知、情绪和健康产生严重后果,这表明睡眠必须具有一些基本功能。目前,我们缺乏对这些功能的神经生物学理解。我们知道,睡眠是作为先前觉醒的函数而被严格调节的,并且睡眠压力由非快速眼动(NREM)睡眠的EEG中的慢波活动(SWA)的量来反映。SWA(0.5至4.5 Hz之间的EEG功率密度)与清醒时间成比例增加,并在睡眠期间减少,但为什么会出现这种情况仍不清楚。这项提议的总体目标是测试最近关于NREM睡眠功能的假说-突触稳态假说(SHY)。该假说指出,清醒时的可塑性过程导致许多脑回路中突触强度的净增加;这种突触重量的增加是以代谢消耗增加为代价的。强化的大脑回路在随后的睡眠中导致更大的SWA。反过来,睡眠SWA将突触强度重新正常化到能量可持续且有益于记忆和表现的基线水平。该提案将测试SHY的两个预测:睡眠慢波是学习后皮质回路重新正常化所必需的(目标1);睡眠慢波是睡眠后性能增强所必需的(目标2)。为此,我将使用高密度脑电图记录在人类,同时执行视觉学习任务(旋转学习),涉及右顶叶皮层和学习后睡眠。睡眠慢波将被抑制使用温和的声音刺激,不碎片睡眠。控制实验将在第二阶段睡眠期间施加相同数量的刺激。具体的目的是评估,如果如预测的SHY,学习离开一个本地的痕迹在清醒的脑电图,是重新规范后的睡眠,如果睡眠慢波的选择性剥夺导致持久性这样的脑电图痕迹和抑制后睡眠性能增强。公共卫生关系:有大量证据表明,恢复性睡眠对人类健康是必要的,睡眠剥夺和限制有巨大的社会成本,睡眠障碍非常常见,经常与精神和神经系统疾病有关。通过将大脑可塑性和表现与SWA联系起来,这项调查的结果将促进我们对睡眠功能的基本理解,为SHY提供支持,并为设计专注于SWA质量的治疗方法提供合理的基础,并增强睡眠在健康和疾病中的恢复作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric C Landsness其他文献
Eric C Landsness的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric C Landsness', 18)}}的其他基金
Local slow wave sleep in repair and recovery after stroke
局部慢波睡眠在中风后修复和恢复中的作用
- 批准号:
10171927 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
Local slow wave sleep in repair and recovery after stroke
局部慢波睡眠在中风后修复和恢复中的作用
- 批准号:
10054778 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
Local slow wave sleep in repair and recovery after stroke
局部慢波睡眠在中风后修复和恢复中的作用
- 批准号:
10641881 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
Local slow wave sleep in repair and recovery after stroke
局部慢波睡眠在中风后修复和恢复中的作用
- 批准号:
10474280 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
Brain Plasticity and Local Sleep Homeostasis: An Electrophysiological Perspective
大脑可塑性和局部睡眠稳态:电生理学视角
- 批准号:
8197623 - 财政年份:2008
- 资助金额:
$ 4.6万 - 项目类别:
Brain Plasticity and Local Sleep Homeostasis: An Electrophysiological Perspective
大脑可塑性和局部睡眠稳态:电生理学视角
- 批准号:
7613162 - 财政年份:2008
- 资助金额:
$ 4.6万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




