Physical Approaches for Probing the Mechanical Properties of Intermediate Filamen
探测中间丝机械性能的物理方法
基本信息
- 批准号:8142485
- 负责人:
- 金额:$ 29.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAgitationBacteriaBehaviorBiological AssayCationsCellsCharacteristicsComplementComplexControlled EnvironmentCytoskeletonDetergentsElasticityEndothelial CellsEnvironmentExhibitsFibroblastsGeneticGoalsIn VitroIntermediate FilamentsInvestigationLeftLifeLinkMagnetismMeasurementMeasuresMechanicsMicrofilamentsMicrofluidicsMicrotubulesModificationMolecular MotorsMotionMotorNatureOrganismPhosphorylationPhysiologicalPost-Translational Protein ProcessingProgram Research Project GrantsPropertyProteinsRegulationRheologyRoleRunningSerumSiteStretchingStructureTechniquesTestingTracerVimentinWorkbasecrosslinkdesignlaser tweezermagnetic beadsmagnetic fieldmutantparticleprogramsreconstitutionresearch studyresponseshear stress
项目摘要
The mechanical properties of cells fundamentally underlie all cellular behavior; the cell must support forces, must exert forces and must respond to forces (1-5). Moreover, while the genetic response within the cell ultimately provides the control mechanism, it is the mechanical response of the cell that dictates its primary function within a larger organism; without being able to withstand the forces of its environment, the cell would not be able to function at all. The mechanical properties of a cell are determined to a large extent by the three filamentous networks within the cytoskeleton, actin, microtubules and intermediate filaments (IF) (1). While actin networks and microtubules have been rather well studied, this is not the case for IF networks, whose study has significantly lagged that of the others (6, 7-9). Indeed, it has been proposed that networks of IF are essential in determining the mechanical properties of and mechanotransduction in virtually all vertebrate cells.
However, there is little direct evidence supporting this proposed IF function. The IF networks within a cell are thought to be able to withstand very large strain; this can often be well in excess of 100% (6, 7, 10) In addition, the IF networks exhibit pronounced strain stiffening, effectively becoming much stiffer as they are stretched (6).
However, the intracellular environment is highly heterogeneous and complex, making determination of the underlying mechanical properties of these networks extremely difficult. The IFs are remarkably dynamic, and are constantly being remodeled and reassembled, presumably driven in some fashion by the motors that run along either microtubules or actin filaments in the cell and these must guide the assembly of the VIF. There are also, presumably, associated proteins which regulate and control the VIF properties, and which provide crosslinking of the network to the surrounding networks within the cell, and within the VIF network itself (11-16).
However, the complexity and richness of the behavior of the VIF within the cell, while controlling much of the function, also makes elucidating the fundamental properties much more difficult; moreover, it precludes measurement of the mechanical properties in a fashion that would allow determination of the underlying design principles of the network. The overarching goal of this section of the Program Project is therefore to measure the properties of VIF in a more controlled environment, thereby enabling us to elucidate their roles in establishing and regulating the mechanical properties of cells (17).
The work proposed here will begin with a detailed study of the properties of networks of vimentin intermediate filament (VIF), which can be expressed in bacteria to enable us to produce sufficient quantifies to reconstitute the protein into networks and to make detailed measurements of the mechanical properties of these networks. These measurements will be performed using traditional bulk rheology (18). In addition, we will develop several new assays based on multi-particle tracking, measurements of the motion of small tracer particles embedded within the network and subject either to thermal agitation or to externally applied forces controlled by a magnetic field. The motion of these tracer particles will be interpreted using the formalism of microrheology to measure the elastic and viscous properties of the network. We will investigate the role of physiological concentrations of multivalent cations in regulating the network (6). In addition, we will work with the Goldman lab to investigate the role of phosphorylation in regulating VIF network elasticity (19, 20). We will also obtain constructs for vimentin mutants from our collaborator Harald Herrmann, and will use these to express the mutants in bacteria (21-23). This will enable us to elucidate fundamental design principles for the elasticity of these VIF networks. To complement these investigations of reconstituted networks, we will also form 'ghosts', where most of the cell proteins are washed away with detergent, leaving nearly the full IF network intact (24). By seeding these networks with probe particles, we will measure their elastic properties and compare to those of the reconstituted networks. This will provide a direct probe of the contribution of these VIF networks to cell elasticity. Importantly, these will also enable us to directly measure the response of the networks to shear; cells will be sheared prior to preparing the ghosts, allowing us to probe modifications in the structure and mechanics of the VIF networks due to the shear. We will, in addition, extend these particle tracking measurements to living cells: We will inject the cells with tracer particles and measure the motion of these particles due to both the internal molecular motors within the cell and to external forces, applied either with a magnetic field or with optical tweezers (8, 25 ). These studies will link with the others of this project program grant to elucidate the fundamental design principles of the elasticity of VIF networks.
细胞的机械特性是所有细胞行为的基础;细胞必须支持力,必须施加力,必须对力做出反应(1-5)。此外,虽然细胞内的遗传反应最终提供了控制机制,但细胞的机械反应决定了其在更大生物体中的主要功能;如果不能承受环境的力量,细胞将根本无法发挥作用。细胞的机械特性在很大程度上由细胞骨架内的三种丝状网络决定,即肌动蛋白、微管和中间丝(IF)(1)。虽然肌动蛋白网络和微管已经得到了相当好的研究,但IF网络的情况并非如此,IF网络的研究明显落后于其他网络(6,7-9)。事实上,它已被提出,网络的IF是必不可少的,在确定机械性能和mechanotransduction在几乎所有的脊椎动物细胞。
然而,几乎没有直接证据支持这一建议的IF功能。细胞内的IF网络被认为能够承受非常大的应变;这通常可以远远超过100%(6,7,10)此外,IF网络表现出明显的应变硬化,当它们被拉伸时有效地变得更硬(6)。
然而,细胞内环境是高度异质性和复杂的,使得这些网络的基本机械性能的测定极其困难。IF是非常动态的,并且不断地被重塑和重新组装,可能是由细胞中沿着沿着微管或肌动蛋白丝运行的马达以某种方式驱动的,这些马达必须引导VIF的组装。据推测,还存在调节和控制VIF性质的相关蛋白质,其提供细胞内和VIF网络本身内的网络与周围网络的交联(11-16)。
然而,细胞内VIF行为的复杂性和丰富性,在控制大部分功能的同时,也使得阐明基本性质变得更加困难;此外,它排除了以允许确定网络的基本设计原则的方式测量机械性质。因此,该计划项目这一部分的总体目标是在更受控的环境中测量VIF的特性,从而使我们能够阐明它们在建立和调节细胞机械特性中的作用(17)。
这里提出的工作将开始与波形蛋白中间丝(VIF),它可以在细菌中表达,使我们能够产生足够的数量,以重建成网络的蛋白质的网络的性质的详细研究,并作出这些网络的机械性能的详细测量。这些测量将使用传统的本体流变学(18)进行。此外,我们将开发几种基于多粒子跟踪的新检测方法,测量嵌入网络中的小示踪粒子的运动,并受到热搅拌或由磁场控制的外部作用力的影响。这些示踪剂粒子的运动将被解释使用的形式主义的微观流变测量的弹性和粘性的网络。我们将研究多价阳离子的生理浓度在调节网络中的作用(6)。此外,我们将与高盛实验室合作,研究磷酸化在调节VIF网络弹性中的作用(19,20)。我们还将从我们的合作者Harald Herrmann获得波形蛋白突变体的构建体,并将使用这些构建体在细菌中表达突变体(21-23)。这将使我们能够阐明这些VIF网络的弹性的基本设计原则。为了补充这些重建网络的研究,我们还将形成“幽灵”,其中大多数细胞蛋白质被洗涤剂洗掉,留下几乎完整的IF网络(24)。通过在这些网络中植入探针粒子,我们将测量它们的弹性特性,并与重构网络的弹性特性进行比较。这将提供这些VIF网络对细胞弹性的贡献的直接探测。重要的是,这些也将使我们能够直接测量网络对剪切的响应;细胞将在准备鬼之前被剪切,使我们能够探测由于剪切而导致的VIF网络结构和力学的变化。此外,我们将把这些粒子跟踪测量扩展到活细胞:我们将向细胞注入示踪粒子,并测量这些粒子由于细胞内的内部分子马达和外力而产生的运动,这些外力是用磁场或光镊施加的(8,25)。这些研究将与本项目的其他研究联系起来,以阐明VIF网络弹性的基本设计原则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID A WEITZ其他文献
DAVID A WEITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID A WEITZ', 18)}}的其他基金
Merging Microfludics and Metagenomics for Novel High - throughout Virus Discovery
将微流体学和宏基因组学相结合,在整个病毒发现过程中实现新型高水平
- 批准号:
8796332 - 财政年份:2013
- 资助金额:
$ 29.55万 - 项目类别:
Merging Microfludics and Metagenomics for Novel High - throughout Virus Discovery
将微流体学和宏基因组学相结合,在整个病毒发现过程中实现新型高水平
- 批准号:
8512209 - 财政年份:2013
- 资助金额:
$ 29.55万 - 项目类别:
Merging Microfludics and Metagenomics for Novel High - throughout Virus Discovery
将微流体学和宏基因组学相结合,在整个病毒发现过程中实现新型高水平
- 批准号:
8605835 - 财政年份:2013
- 资助金额:
$ 29.55万 - 项目类别:
Physical Approaches for Probing the Mechanical Properties of Intermediate Filaments
探测中间丝机械性能的物理方法
- 批准号:
10227017 - 财政年份:2011
- 资助金额:
$ 29.55万 - 项目类别:
相似海外基金
Relationship between Biomarkers of Oxidative Stress and Agitation Severity in Moderate-to-severe Alzheimer's Disease
中重度阿尔茨海默病氧化应激生物标志物与躁动严重程度之间的关系
- 批准号:
497994 - 财政年份:2023
- 资助金额:
$ 29.55万 - 项目类别:
Effects of dexmedetomidine on agitation in critically ill TBI patients - DEX-TBI
右美托咪定对危重 TBI 患者躁动的影响 - DEX-TBI
- 批准号:
488402 - 财政年份:2023
- 资助金额:
$ 29.55万 - 项目类别:
Operating Grants
Co-design and evaluation of sensor-instrumented ‘smart socks’ (MPATIX) to improve management of distress and agitation for people with dementia
共同设计和评估传感器仪表“智能袜子”(MPATIX),以改善痴呆症患者的痛苦和躁动管理
- 批准号:
10055596 - 财政年份:2023
- 资助金额:
$ 29.55万 - 项目类别:
Collaborative R&D
Identifying pre-agitation biometric signature in dementia patients: A feasibility study
识别痴呆症患者的躁动前生物识别特征:可行性研究
- 批准号:
486612 - 财政年份:2022
- 资助金额:
$ 29.55万 - 项目类别:
Studentship Programs
Relationship between 4-Hydroxynonenal and Agitation Severity in Alzheimer’s Disease
4-羟基壬烯醛与阿尔茨海默病患者躁动严重程度之间的关系
- 批准号:
486589 - 财政年份:2022
- 资助金额:
$ 29.55万 - 项目类别:
Studentship Programs
Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
- 批准号:
10404523 - 财政年份:2021
- 资助金额:
$ 29.55万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10683499 - 财政年份:2021
- 资助金额:
$ 29.55万 - 项目类别:
Development of Memesto, a wearable repetitive message and music therapy device that senses and reduces agitation in persons with AD/ADRD.
开发 Memesto,一种可穿戴式重复信息和音乐治疗设备,可感知并减少 AD/ADRD 患者的躁动。
- 批准号:
10322846 - 财政年份:2021
- 资助金额:
$ 29.55万 - 项目类别:
Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
- 批准号:
10190522 - 财政年份:2021
- 资助金额:
$ 29.55万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10365272 - 财政年份:2021
- 资助金额:
$ 29.55万 - 项目类别: