LATTICE-BOLTZMANN STUDIES OF TURBULENCE, BLOOD FLOW AND LIQUID CRYSTALS, AND MO

湍流、血流和液晶以及 MO 的格子-玻尔兹曼研究

基本信息

  • 批准号:
    8171742
  • 负责人:
  • 金额:
    $ 0.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In this LRAC request, we propose to investigate problems in turbulence, haemodynamics, materials research and the biomolecular science. In the materials science domain, we plan to quantitatively study the emergent properties of liquid crystalline materials and of clay-polymer nanocomposites which have immense scientific and technological relevance. This work will be carried for very large system models, using massively parallel codes, hitherto not possible due to computational resource limitations. In the biomolecular sciences domain, our projects are concerned with understanding biologically relevant processes based on drug binding affinity calculations. In the projects proposed here, we build on earlier work where we have developed and validated novel computational algorithms and grid computing infrastructure, allowing access to physical timescales via molecular dynamics simulations, which have so far been very difficult to achieve. We shall focus on six specific projects in this proposal: (i) Identification of Unstable Periodic Orbits (UPOs) in the Navier-Stokes equations: The objective of this work is to identify Unstable Periodic Orbits for the characterisation of turbulent flows using a novel four- dimensional spacetime parallelisable approach. (ii) Patient-specific whole brain blood flow simulations: Our objective in this project is to provide an efficient computational environment to assist interventional neuroradiologists in neurovascular surgery by providing information on patient-specific haemodynamics within clinically relevant timeframes. (iii) Large-scale lattice-Boltzmann simulations of liquid crystalline materials: In this project we will study the rheological response and self-assembly dynamics of cubic liquid crystals in ternary amphiphilic mixtures using our tried and tested kinetic lattice-Boltzmann approach. (iv) Materials properties of clay-polymer nanocomposites: The objective of this work is to calculate the bulk materials properties of clay-polymer nanocomposites using molecular dynamics simulations using unprecedented model sizes. (v) Drug resistance in HIV-1 proteases and reverse transcriptases: The objective of this work is to elucidate and predict the effect of patient-specific mutations in HIV-1 Proteases and Reverse Transcriptases on drug-binding affinities. This work will be carried using NAMD building on novel simulation methodologies developed in our previous work on the TeraGrid. (vi) Predicting affinity of EGFR kinase domain for drug inhibitors using high performance computing molecular dynamics: The objective this work is to elucidate and predict the effect of patient-specific mutations in the cancer-specific protein, epidermal growth factor receptor (EGFR) on drug-binding affinities. This work will be carried using NAMD and novel ensemble molecular dynamics simulations. We use scalable codes HYPO4D, HemeLB, LB3D, LAMMPS and NAMD which have been extensively benchmarked and used in our previous work on the TeraGrid, particularly on Ranger, where we have achieved scalability on up to 32768 cores. The HemeLB code has been used to conduct simulation studies within the GENIUS project for which we received the "Transformational Science Challenge" award at TeraGrid'08. We have also received 5K Club awards for the HYPO4D and LB3D codes. We will use NAMD for our molecular dynamics studies which is a widely used community-code and has been previously used in award winning simulations of the SPICE project.
这个子项目是众多研究子项目之一

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BRUCE BOGHOSIAN其他文献

BRUCE BOGHOSIAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BRUCE BOGHOSIAN', 18)}}的其他基金

APPEAL TO REFEREE REPORTS FOR THE LRAC PROPOSAL MCA08X031 "LATTICE BOLTZMANN ST
对 LRAC 提案 MCA08X031“LATTICE BOLTZMANN ST”的裁判报告提出上诉
  • 批准号:
    8171743
  • 财政年份:
    2010
  • 资助金额:
    $ 0.11万
  • 项目类别:
LATTICE-BOLTZMANN STUDIES OF TURBULENCE, BLOOD FLOW AND LIQUID CRYSTALS, AND MO
湍流、血流和液晶以及 MO 的格子-玻尔兹曼研究
  • 批准号:
    7956292
  • 财政年份:
    2009
  • 资助金额:
    $ 0.11万
  • 项目类别:
APPEAL TO REFEREE REPORTS FOR THE LRAC PROPOSAL MCA08X031 "LATTICE BOLTZMANN ST
对 LRAC 提案 MCA08X031“LATTICE BOLTZMANN ST”的裁判报告提出上诉
  • 批准号:
    7956293
  • 财政年份:
    2009
  • 资助金额:
    $ 0.11万
  • 项目类别:
LATTICE BOLTZMANN AND MOLECULAR DYNAMICS STUDIES IN MATERIALS AND BIOMOLECULAR
材料和生物分子中的格子玻尔兹曼和分子动力学研究
  • 批准号:
    7956142
  • 财政年份:
    2009
  • 资助金额:
    $ 0.11万
  • 项目类别:
LATTICE BOLTZMANN AND MOLECULAR DYNAMICS STUDIES IN MATERIALS AND BIOMOLECULAR
材料和生物分子中的格子玻尔兹曼和分子动力学研究
  • 批准号:
    7723231
  • 财政年份:
    2008
  • 资助金额:
    $ 0.11万
  • 项目类别:
LATTICE BOLTZMANN AND MOLECULAR DYNAMICS STUDIES IN MATERIALS AND BIOMOLECULAR
材料和生物分子中的格子玻尔兹曼和分子动力学研究
  • 批准号:
    7601494
  • 财政年份:
    2007
  • 资助金额:
    $ 0.11万
  • 项目类别:
Knot Theory and Navier Stokes Turbulence and Large Scale Molecular Dynamics for
纽结理论和纳维斯托克斯湍流和大规模分子动力学
  • 批准号:
    6980037
  • 财政年份:
    2004
  • 资助金额:
    $ 0.11万
  • 项目类别:

相似国自然基金

反应堆时域-频域中子噪声模拟的格子 Boltzmann方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
角度非截断量子Boltzmann方程的数学理论研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于格子Boltzmann方法和深度学习的多相渗流多尺度模型和机理研究
  • 批准号:
    52376068
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
孔隙尺度下多相多组分复杂流体相变传热的格子Boltzmann方法及其应用研究
  • 批准号:
    12372286
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
Debye-Yukawa势模型下的Boltzmann方程测度值解的研究
  • 批准号:
    12301276
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
激波与流体界面相互作用的格子Boltzmann方法建模及数值研究
  • 批准号:
    12302384
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于格子Boltzmann方法的粉末床熔融过程介观建模与仿真
  • 批准号:
    12302373
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相对论Boltzmann方程的牛顿极限与流体动力学极限
  • 批准号:
    12361045
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
考虑自由表面流动特性的固液相变格子 Boltzmann 方法建模及仿真
  • 批准号:
    2022JJ40466
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Anomalous Nernst Effect in Ferromagnetic Fe-Heusler Alloy Thin Film: Clarification of Beyond Boltzmann
铁磁 Fe-Heusler 合金薄膜中的反常能斯特效应:超越玻尔兹曼的澄清
  • 批准号:
    22KK0228
  • 财政年份:
    2023
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Probe of Fundamental Physics with Numerical Study of Black Hole Formation using the Boltzmann Neutrino Transport
利用玻尔兹曼中微子输运对黑洞形成进行数值研究的基础物理探索
  • 批准号:
    22KJ2915
  • 财政年份:
    2023
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
  • 批准号:
    2887026
  • 财政年份:
    2023
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Studentship
Physics Informed Neural Networks to solve the Boltzmann Transport Equation (Ref: 4741)
物理信息神经网络求解玻尔兹曼传输方程(参考:4741)
  • 批准号:
    2879436
  • 财政年份:
    2023
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Studentship
Application of Boltzmann Transport Equation solutions to nuclear reactor physics and radiotherapy applications
玻尔兹曼输运方程解在核反应堆物理和放射治疗应用中的应用
  • 批准号:
    RGPIN-2021-03899
  • 财政年份:
    2022
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Discovery Grants Program - Individual
Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
  • 批准号:
    2200515
  • 财政年份:
    2022
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Standard Grant
Turbulent noise reduction using adjoint lattice Boltzmann method
使用伴随格子玻尔兹曼方法降低湍流噪声
  • 批准号:
    22K03929
  • 财政年份:
    2022
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative model for Functional Brain Maps: Spatial Arrangement Using Restricted Boltzmann Machines
功能脑图的生成模型:使用受限玻尔兹曼机的空间排列
  • 批准号:
    574432-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.11万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Quantum many-body physics beyond the Boltzmann paradigm: prethermalization, many-body localization, and their applications
职业:超越玻尔兹曼范式的量子多体物理:预热、多体局域化及其应用
  • 批准号:
    2236517
  • 财政年份:
    2022
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Continuing Grant
Simulation numérique des écoulements multi-composants à trois phases par l'approche de Boltzmann sur réseau
多组分的模拟数值和玻尔兹曼方法的三相
  • 批准号:
    RGPIN-2022-03506
  • 财政年份:
    2022
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了