Computational Design of Unnatural Amino Acid Dependent Metalloproteins

非天然氨基酸依赖性金属蛋白的计算设计

基本信息

  • 批准号:
    8202024
  • 负责人:
  • 金额:
    $ 4.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-11-15 至 2013-11-14
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The confluence of the fields of site-specific incorporation of unnatural amino acids and computational protein design represents a currently unexplored but promising avenue of biochemical research. While computational methods have been developed for naturally occurring proteins, the ability to treat non-natural amino acids with these techniques has yet to be fully explored. The research proposed seeks to develop a computational method that allows design of proteins containing unnatural amino acids, with the ultimate goal of generating novel unnatural amino acid dependent enzymes with therapeutic potential. The Rosetta suite of software developed by members of the Baker lab at the University of Washington will first be used to design iron binding proteins that utilize the metal binding unnatural amino acid bipyridyl alanine - first incorporated into proteins by Schultz and co-workers at The Scripps Research Institute. As this unnatural amino acid has inherent affinity for iron, the difficult problem of designing a metal binding site within a protein should be rendered more computationally tractable. As a second goal, a binding site for dopamine (which will provide two oxygen ligands for the iron) will be concurrently engineered. Catechols like dopamine have inherently high affinities for iron suggesting the engineered proteins could serve as sensors for this important class of small molecules. Finally, the catechol binding proteins will be further designed computationally with the goal of creating a non-natural amino acid dependent extradiol dioxygenase like enzyme. Such an enzyme could have a far-reaching impact with respect to bioremediation of persistent anthropomorphic toxins such as polychlorinated biphenyl compounds. The designed unnatural amino acid containing proteins will be produced in a bacterial expression system using techniques developed by members of the Schultz laboratory. Purified proteins will then be analyzed using a host of bioanalytical techniques that will examine metal or catechol binding abilities, or enzymatic activity depending on the specific aim. Data collected in the course of experimentation will be used for future design of other unnatural amino acid containing proteins both within the scope of this project, and beyond. Consequently, this research should have far reaching impacts within the biological sciences that will extend beyond the projects described above. As both of the scientific fields explored in this proposal are currently in a state of rapid growth, any information gleaned in the course of this research will guide further computational design efforts involving other currently available, genetically encoded non-natural amino acids, as well as those developed in the future. PUBLIC HEALTH RELEVANCE: This research ultimately seeks to engineer unnatural amino acid containing proteins that possess the ability to catalytically degrade polychlorinated biphenyl environmental toxins. Additionally, the computational methods developed in the course of the research will provide vital information that will guide future efforts for the design of unnatural amino acid containing proteins with therapeutic and other useful functions.
描述(由申请人提供):非天然氨基酸的位点特异性掺入和计算蛋白质设计领域的融合代表了目前尚未探索但有前途的生物化学研究途径。虽然已经开发了用于天然存在的蛋白质的计算方法,但是用这些技术处理非天然氨基酸的能力尚未被充分探索。这项研究旨在开发一种计算方法,允许设计含有非天然氨基酸的蛋白质,最终目标是产生具有治疗潜力的新型非天然氨基酸依赖性酶。 由华盛顿大学贝克实验室成员开发的罗塞塔软件套件将首先用于设计利用金属结合非天然氨基酸联吡啶丙氨酸的铁结合蛋白-舒尔茨和斯克里普斯研究所的同事首次将其纳入蛋白质中。由于这种非天然氨基酸对铁具有固有的亲和力,因此设计蛋白质内的金属结合位点的难题应该在计算上更加易于处理。作为第二个目标,多巴胺的结合位点(将为铁提供两个氧配体)将同时工程化。像多巴胺这样的儿茶酚与铁有着天生的高亲和力,这表明这种工程蛋白质可以作为这类重要小分子的传感器。最后,儿茶酚结合蛋白将被进一步计算设计,目标是产生非天然氨基酸依赖性的二醇外双加氧酶样酶。这种酶可能对多氯联苯化合物等持久性拟人毒素的生物修复产生深远影响。 设计的含非天然氨基酸的蛋白质将使用舒尔茨实验室成员开发的技术在细菌表达系统中生产。然后将使用大量生物分析技术分析纯化的蛋白质,这些技术将检查金属或儿茶酚结合能力或酶活性,这取决于具体目的。在实验过程中收集的数据将用于未来设计其他非天然氨基酸蛋白质,无论是在本项目的范围内,还是超越。 因此,这项研究应该在生物科学领域产生深远的影响,超出上述项目的范围。由于该提案中探索的两个科学领域目前都处于快速增长的状态,因此在本研究过程中收集的任何信息都将指导进一步的计算设计工作,涉及其他目前可用的遗传编码的非天然氨基酸以及未来开发的氨基酸。 公共卫生相关性:这项研究最终旨在工程化含有非天然氨基酸的蛋白质,这些蛋白质具有催化降解多氯联苯环境毒素的能力。此外,在研究过程中开发的计算方法将提供重要的信息,指导未来设计具有治疗和其他有用功能的含非天然氨基酸的蛋白质的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Mills其他文献

Jeremy Mills的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Mills', 18)}}的其他基金

Expanding the fluorescent toolkit with non-canonical amino acids
使用非规范氨基酸扩展荧光工具包
  • 批准号:
    10599850
  • 财政年份:
    2020
  • 资助金额:
    $ 4.84万
  • 项目类别:
Expanding the fluorescent toolkit with non-canonical amino acids
使用非规范氨基酸扩展荧光工具包
  • 批准号:
    10377964
  • 财政年份:
    2020
  • 资助金额:
    $ 4.84万
  • 项目类别:
Genetically encodable epitopes to overcome size and resolution limits in cryo-EM
基因可编码表位可克服冷冻电镜中的尺寸和分辨率限制
  • 批准号:
    10017301
  • 财政年份:
    2019
  • 资助金额:
    $ 4.84万
  • 项目类别:
Computational Design of Unnatural Amino Acid Dependent Metalloproteins
非天然氨基酸依赖性金属蛋白的计算设计
  • 批准号:
    8391786
  • 财政年份:
    2011
  • 资助金额:
    $ 4.84万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 4.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了