Artifact-Free Reconstruction of Medical Imaging Information
医学影像信息的无伪影重建
基本信息
- 批准号:8101632
- 负责人:
- 金额:$ 25.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAlgorithmsAnatomic structuresAnatomyBladderCalibrationCancer EtiologyCancer PatientCardiacCessation of lifeChestClinicClinicalComplexContractsDataDetectionDevelopmentDiagnostic radiologic examinationDigital X-RayDisciplineDiscipline of Nuclear MedicineDoseEngineeringEvaluationExternal Beam Radiation TherapyGeneric DrugsGoalsHealthcareImageImage AnalysisImageryJointsLimb structureLiverMalignant NeoplasmsMalignant neoplasm of prostateMathematicsMedical ImagingMethodsModalityMorphologic artifactsNoiseNormal tissue morphologyOrganOutcomePatientsPelvisPerformancePhysicsPositioning AttributeProcessPropertyProstateProtocols documentationProviderRadiationRadiation therapyRectumRelative (related person)ResearchResolutionScreening procedureServicesShapesSiteSkin CancerStructureStudentsSystemSystems DevelopmentTechniquesTechnologyTestingTimeToxic effectUltrasonographyUnited Statesattenuationbasecancer therapycomputerizedcostdesigndigital imagingdisease diagnosishuman tissueimage guided surgery/therapyimage processingimaging modalityimprovedmennovelportabilityreconstructionresearch clinical testingsimulationskillssoft tissuesoftware systemssuccesstooltreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): Prostate cancer is the most common cancer after skin cancer and the second leading cause of cancer death in men in the United States. The options for radiotherapy treatment planning of prostate cancer are limited by CT's low soft tissue contract, MRI's distortion of prostate shape, and ultrasound's speckle noise and attenuation-induced imaging artifacts. Robust and automatic prostate segmentation has only achieved limited success in the past decades and remains a challenging task. A novel technique for reconstruction of medical imaging information is proposed in this project. Pairs of pathological useful and anatomically correct backscatter and attenuation fields can be reconstructed from ultrasound images, along with automatic structure segmentation. The excellent soft tissue contract and portability of ultrasound make it a promising modality for accurate determination of the actual prostate boundary, and to be integrated into prostate cancer treatment planning to give adequate target dose while minimizing radiation to surrounding normal tissues. Four specific aims are proposed. In aim 1, the method and algorithm based on variational principle will be developed and optimized to compensate for attenuation artifacts, and automatically segment anatomic structures in medical ultrasound images. In aim 2, image acquisition protocol and system software will be developed to construct 3D ultrasound volumes and accurately register ultrasound images spatially. In aim 3, the accuracy of the developed system will be quantified and verified in boundary segmentation, localized attenuation artifact correction, and spatial calibration. In aim 4, the approach will be evaluated clinically and qualitatively by involving prostate cancer patients. Treatment plans will be designed based on the proposed method, and compared on dose coverage in the prostate, bladder and rectum. The significance of reduction in planning margin using the proposed method will be evaluated. This project exploits a greater potential of trans-abdominal ultrasound imaging in prostate cancer treatment planning than is currently being realized in daily verification. The proposed method will improve attenuation artifact correction, reveal hidden/additional clinic-important information, automatically delineate anatomic structures, increase cancer treatment accuracy, and reduce normal tissue toxicity.
PUBLIC HEALTH RELEVANCE: Robust and automatic prostate segmentation has only achieved limited success in the past decades and remains a challenging task. This project exploits a greater potential of trans-abdominal ultrasound imaging in prostate cancer treatment planning than is currently being realized in daily verification. The proposed method will improve attenuation artifact correction, reveal hidden/additional clinic-important information, automatically delineate anatomic structures, increase cancer treatment accuracy, and reduce normal tissue toxicity.
描述(由申请人提供):前列腺癌是继皮肤癌之后最常见的癌症,也是美国男性癌症死亡的第二大原因。前列腺癌放射治疗计划的选择受到CT的低软组织收缩、MRI的前列腺形状失真以及超声的斑点噪声和衰减诱导的成像伪影的限制。在过去的几十年里,稳健的自动前列腺分割只取得了有限的成功,仍然是一项具有挑战性的任务。 本计画提出一种新的医学影像资讯重建技术。沿着自动结构分割,可以从超声图像重建成对的病理学上有用的和解剖学上正确的反向散射和衰减场。超声的优良的软组织收缩和便携性使其成为准确确定实际前列腺边界的有前途的模式,并被整合到前列腺癌治疗计划中,以提供足够的靶剂量,同时最大限度地减少对周围正常组织的辐射。 提出了四个具体目标。目标一:发展和优化基于变分原理的方法和算法,以补偿衰减伪影,并自动分割医学超声图像中的解剖结构。在目标2中,将开发图像采集协议和系统软件,以构建3D超声体积并在空间上准确配准超声图像。在目标3中,将在边界分割、局部衰减伪影校正和空间校准中量化和验证所开发系统的准确性。在目标4中,将通过涉及前列腺癌患者对该方法进行临床和定性评价。治疗计划将根据所提出的方法设计,并在前列腺、膀胱和直肠的剂量覆盖范围上进行比较。将评估使用所提出的方法减少规划裕度的意义。 该项目利用了经腹超声成像在前列腺癌治疗计划中的更大潜力,而不是目前在日常验证中实现的。所提出的方法将改善衰减伪影校正,揭示隐藏的/额外的临床重要信息,自动描绘解剖结构,提高癌症治疗的准确性,并减少正常组织的毒性。
公共卫生相关性:在过去的几十年里,稳健的自动前列腺分割只取得了有限的成功,仍然是一项具有挑战性的任务。该项目利用了经腹超声成像在前列腺癌治疗计划中的更大潜力,而不是目前在日常验证中实现的。所提出的方法将改善衰减伪影校正,揭示隐藏的/额外的临床重要信息,自动描绘解剖结构,提高癌症治疗的准确性,并减少正常组织的毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jue Wang其他文献
Jue Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.03万 - 项目类别:
Continuing Grant