Discovering genomic rearrangements under selection in serious ovarian cancer

发现严重卵巢癌选择下的基因组重排

基本信息

  • 批准号:
    8354071
  • 负责人:
  • 金额:
    $ 11.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Recurrent gene fusions and internal tandem duplications are among the most tumor-specific molecular markers known and can provide the potential for therapeutic targets. With a few notable exceptions, however, relatively common recurrent gene fusions have not been identified in commonly occurring carcinomas, which often have multiple, complex chromosomal rearrangements that are difficult to analyze by traditional cytogenetic approaches. Complex tumor karyotpes make it difficult to identify gene fusions using cytogenetics, but suggest the possibility that recurrent rearrangements producing fusions or internal tandem duplications (ITDs) may be prevalent. This proposal aims to use deep sequencing and the novel analytic techniques described to study aspects of the serous ovarian cancer genome and transcriptome which have remained hidden due to limitations in technology or analytical methods, and to test intra- individual and inter-individual selective pressures on tumors. The aspects of this proposal are as follows 1) to further investigate the extent of gene rearrangements in ovarian cancer, focusing on discovering local rearrangements transcribed into RNA; 2) to determine the composition of a group of novel circular transcripts that I have recently found to be expressed at relatively high levels in normal and pathogenic human cells; 3) to characterize double minutes in ovarian cancer, combining bioinformatics to determine rearrangements in their sequence composition and statistical analysis to determine evolutionary pressures on their composition exerted by the tumors. The applicant has a track-record of success in discovering novel gene fusions with ultra-high throughput sequencing (the ESRRA-C11orf20 fusion), as well as designing original rigorous statistical and bioinformatic methods for ultra high throughput data. Under the mentorship of Dr. Patrick O. Brown, a pioneer in high throughput genomic technologies and statistical methods for analyzing them, the applicant will continue career development and training. The first aim of this project will be performed during the mentoring phase, and experiments for aims 2 and 3 will be piloted. The K99/R00 award will support the applicant in her development into an independent investigator who combines statistical and experimental approaches to study cancer genetics. PUBLIC HEALTH RELEVANCE: Ovarian cancer is estimated to kill more than 140,000 women every year and has a poor prognosis once it presents with clinical symptoms. Discovery of truly tumor- specific molecular markers or identification of early and selected amplifications may be essential for effective early detection of serous tumors, which account for the majority of ovarian cancer deaths. While this proposal is focused on ovarian cancer, the methods are applicable to any cancer, and thus have broad significance. The consolidating theme of this proposal is to use deep sequencing and the novel analytic techniques described to study aspects of the serous ovarian cancer genome and transcriptome which have remained hidden due to limitations in technology or analytical methods. The experimental and analytical methods developed will be applicable to all tumor types and hence of broad relevance to the study of cancer.
描述(由申请人提供):复发基因融合和内部串联重复是已知的最肿瘤特异性分子标记之一,可以为治疗靶标提供潜力。然而,除了一些值得注意的例外,在常见发生的癌中尚未发现相对常见的复发基因融合,这些癌通常具有多个复杂的染色体重排,这些重排很难通过传统的细胞遗传学方法来分析。复杂的肿瘤核核酸盐使使用细胞遗传学难以识别基因融合,但表明可能普遍产生融合或内部串联重复(ITD)的复发重排可能是普遍的。该建议旨在使用深层测序以及所描述的新的分析技术来研究浆液性卵巢癌基因组和转录组的各个方面,由于技术或分析方法的局限性,它们一直隐藏,并测试对肿瘤的个体内和个体间选择性压力。该提案的各个方面如下1)进一步研究卵巢癌基因重排的程度,重点是发现转录为RNA的局部重排; 2)确定我最近发现的一组新型圆形转录本的组成,这些转录本在正常和致病性人类细胞中以相对较高的水平表达; 3)表征卵巢癌的双分钟,结合生物信息学以确定其序列组成和统计分析中的重排,以确定其肿瘤所施加的成分的进化压力。 申请人在发现具有超高吞吐量测序(ESRRA-C11ORF20融合)的新型基因融合方面具有成功的轨道纪录,并为超高吞吐量数据设计了原始的严格统计和生物信息学方法。在高吞吐量基因组技术和分析统计方法的先驱帕特里克·O·布朗(Patrick O. Brown)的指导下,申请人将继续职业发展和培训。该项目的第一个目标将在指导阶段进行,目标2和3的实验将进行试验。 K99/R00奖将支持申请人的发展,成为一个独立的研究者,该研究人员结合了研究癌症遗传学的统计和实验方法。 公共卫生相关性: 据估计,卵巢癌每年杀死140,000多名妇女,一旦表现出临床症状,预后就会降低。发现真正的肿瘤特异性分子标记或早期和选定放大的鉴定对于有效的早期可能是必不可少的 检测浆液性肿瘤,这是大多数卵巢癌死亡。尽管该提案的重点是卵巢癌,但该方法适用于任何癌症,因此具有广泛的意义。 该提案的合并主题是使用深层测序,并描述的新分析技术研究浆液性卵巢癌基因组和转录组的各个方面,由于技术或分析方法的局限性,它们一直隐藏。开发的实验和分析方法将适用于所有肿瘤类型,因此与癌症研究的广泛相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Salzman其他文献

Julia Salzman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Salzman', 18)}}的其他基金

Computational- and experimental- driven discovery of splicing regulation and circRNA function
计算和实验驱动的剪接调控和 circRNA 功能发现
  • 批准号:
    10321906
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
AI/ML Ready appraoches for integrative RNA processing, splicing and spatial genomics
用于整合 RNA 处理、剪接和空间基因组学的 AI/ML Ready 方法
  • 批准号:
    10407768
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
Computational- and experimental- driven discovery of splicing regulation and circRNA function
计算和实验驱动的剪接调控和 circRNA 功能发现
  • 批准号:
    10565918
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
Unbiased discovery of mechanisms regulating circRNA
circRNA调节机制的公正发现
  • 批准号:
    9332410
  • 财政年份:
    2015
  • 资助金额:
    $ 11.01万
  • 项目类别:
Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
  • 批准号:
    8773658
  • 财政年份:
    2014
  • 资助金额:
    $ 11.01万
  • 项目类别:
Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
  • 批准号:
    8976219
  • 财政年份:
    2014
  • 资助金额:
    $ 11.01万
  • 项目类别:
Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
  • 批准号:
    8788508
  • 财政年份:
    2014
  • 资助金额:
    $ 11.01万
  • 项目类别:

相似国自然基金

生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
  • 批准号:
    72374130
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
  • 批准号:
    72363025
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
  • 批准号:
    72104063
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:

相似海外基金

Brain Networks of Turning Performance with Aging and Stroke
衰老和中风影响转向性能的大脑网络
  • 批准号:
    10536898
  • 财政年份:
    2022
  • 资助金额:
    $ 11.01万
  • 项目类别:
Preventing Breast Cancer: Decisions and Effects among Women at Elevated Risk
预防乳腺癌:高风险女性的决定和影响
  • 批准号:
    8822042
  • 财政年份:
    2014
  • 资助金额:
    $ 11.01万
  • 项目类别:
Characterizing Cognitive Decline in Late Life Depression: The ADNI-D Project
晚年抑郁症认知衰退的特征:ADNI-D 项目
  • 批准号:
    10522904
  • 财政年份:
    2013
  • 资助金额:
    $ 11.01万
  • 项目类别:
Characterizing Cognitive Decline in Late Life Depression: The ADNI-D Project
晚年抑郁症认知衰退的特征:ADNI-D 项目
  • 批准号:
    10681480
  • 财政年份:
    2013
  • 资助金额:
    $ 11.01万
  • 项目类别:
Supraspinal Contributions to Locomotor Control and Recovery after Stroke
脊柱上对中风后运动控制和恢复的贡献
  • 批准号:
    8431356
  • 财政年份:
    2010
  • 资助金额:
    $ 11.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了