Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
基本信息
- 批准号:8354071
- 负责人:
- 金额:$ 11.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAwardBilateralBiochemicalBioinformaticsCandidate Disease GeneCarcinomaCellsCessation of lifeChromosomal RearrangementClinicalComplexCytogeneticsDNADNA Sequence RearrangementDataDevelopmentDiagnosisDouble MinutesDrug Delivery SystemsEarly DiagnosisEarly identificationEvolutionGene Expression ProfileGene FusionGene RearrangementGenesGeneticGenetic VariationGenomicsGoalsHumanIndividualJointsMalignant NeoplasmsMalignant neoplasm of ovaryMammalian OviductsMentorsMentorshipMethodsOvarian Serous AdenocarcinomaOvarian Serous TumorPathogenesisPathway interactionsPhasePrevalenceRNARecurrenceResearchResearch PersonnelScreening for Ovarian CancerScreening procedureSerousSolid NeoplasmStagingStatistical MethodsStructureSymptomsTechniquesTechnologyTestingTissuesTrainingTranscriptVariantWomananalytical methodanticancer researchbasecancer geneticscancer genomecareer developmentcircular RNAdesigngenome-wideimprovedinnovationkillingsmolecular markernoveloutcome forecastovarian neoplasmpressureresearch studysuccesstherapeutic targettumor
项目摘要
DESCRIPTION (provided by applicant): Recurrent gene fusions and internal tandem duplications are among the most tumor-specific molecular markers known and can provide the potential for therapeutic targets. With a few notable exceptions, however, relatively common recurrent gene fusions have not been identified in commonly occurring carcinomas, which often have multiple, complex chromosomal rearrangements that are difficult to analyze by traditional cytogenetic approaches. Complex tumor karyotpes make it difficult to identify gene fusions using cytogenetics, but suggest the possibility that recurrent rearrangements producing fusions or internal tandem duplications (ITDs) may be prevalent. This proposal aims to use deep sequencing and the novel analytic techniques described to study aspects of the serous ovarian cancer genome and transcriptome which have remained hidden due to limitations in technology or analytical methods, and to test intra- individual and inter-individual selective pressures on tumors. The aspects of this proposal are as follows 1) to further investigate the extent of gene rearrangements in ovarian cancer, focusing on discovering local rearrangements transcribed into RNA; 2) to determine the composition of a group of novel circular transcripts that I have recently found to be expressed at relatively high levels in normal and pathogenic human cells; 3) to characterize double minutes in ovarian cancer, combining bioinformatics to determine rearrangements in their sequence composition and statistical analysis to determine evolutionary pressures on their composition exerted by the tumors. The applicant has a track-record of success in discovering novel gene fusions with ultra-high throughput sequencing (the ESRRA-C11orf20 fusion), as well as designing original rigorous statistical and bioinformatic methods for ultra high throughput data. Under the mentorship of Dr. Patrick O. Brown, a pioneer in high throughput genomic technologies and statistical methods for analyzing them, the applicant will continue career development and training. The first aim of this project will be performed during the mentoring phase, and experiments for aims 2 and 3 will be piloted. The K99/R00 award will support the applicant in her development into an independent investigator who combines statistical and experimental approaches to study cancer genetics.
PUBLIC HEALTH RELEVANCE:
Ovarian cancer is estimated to kill more than 140,000 women every year and has a poor prognosis once it presents with clinical symptoms. Discovery of truly tumor- specific molecular markers or identification of early and selected amplifications may be essential for effective early
detection of serous tumors, which account for the majority of ovarian cancer deaths. While this proposal is focused on ovarian cancer, the methods are applicable to any cancer, and thus have broad significance.
The consolidating theme of this proposal is to use deep sequencing and the novel analytic techniques described to study aspects of the serous ovarian cancer genome and transcriptome which have remained hidden due to limitations in technology or analytical methods. The experimental and analytical methods developed will be applicable to all tumor types and hence of broad relevance to the study of cancer.
描述(申请人提供):复发性基因融合和内部串联复制是已知的最具肿瘤特异性的分子标记之一,可以提供潜在的治疗靶点。然而,除了少数值得注意的例外,在常见的癌症中还没有发现相对常见的复发基因融合,这种癌症通常有多个复杂的染色体重排,很难用传统的细胞遗传学方法进行分析。复杂的肿瘤核型使利用细胞遗传学鉴定基因融合变得困难,但提示产生融合或内部串联复制(ITDS)的反复重排可能是普遍存在的。这项建议旨在使用深度测序和所描述的新的分析技术来研究由于技术或分析方法的限制而仍然隐藏的浆液性卵巢癌基因组和转录组的某些方面,并测试个体内和个体间对肿瘤的选择压力。该建议的方面如下:1)进一步研究卵巢癌中基因重排的程度,重点是发现转录成RNA的局部重排;2)确定一组我最近发现在正常和致病人类细胞中相对高水平表达的新型循环转录本的组成;3)表征卵巢癌中的双分钟,结合生物信息学来确定其序列组成的重排,并进行统计分析,以确定肿瘤对其组成施加的进化压力。申请人在利用超高通量测序发现新的基因融合(ESRRA-C11orf20融合)以及为超高通量数据设计原创的严格的统计和生物信息学方法方面有着成功的记录。在高通量基因组技术和用于分析这些技术的统计方法的先驱帕特里克·O·布朗博士的指导下,申请者将继续职业发展和培训。该项目的第一个目标将在指导阶段实施,并将试行目标2和目标3的实验。K99/R00奖将支持申请者发展成为一名结合统计和实验方法研究癌症遗传学的独立研究员。
公共卫生相关性:
据估计,卵巢癌每年导致14万多名女性死亡,一旦出现临床症状,预后就会很差。发现真正的肿瘤特异性分子标志物或鉴定早期和选择性扩增可能对早期有效至关重要
检测浆液性肿瘤,这是卵巢癌死亡的主要原因。虽然这项建议的重点是卵巢癌,但这些方法适用于任何癌症,因此具有广泛的意义。
这项提议的巩固主题是使用深度测序和所描述的新的分析技术来研究由于技术或分析方法的限制而仍然隐藏的浆液性卵巢癌基因组和转录组的某些方面。开发的实验和分析方法将适用于所有类型的肿瘤,因此对癌症的研究具有广泛的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Salzman其他文献
Julia Salzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Salzman', 18)}}的其他基金
Computational- and experimental- driven discovery of splicing regulation and circRNA function
计算和实验驱动的剪接调控和 circRNA 功能发现
- 批准号:
10321906 - 财政年份:2021
- 资助金额:
$ 11.01万 - 项目类别:
AI/ML Ready appraoches for integrative RNA processing, splicing and spatial genomics
用于整合 RNA 处理、剪接和空间基因组学的 AI/ML Ready 方法
- 批准号:
10407768 - 财政年份:2021
- 资助金额:
$ 11.01万 - 项目类别:
Computational- and experimental- driven discovery of splicing regulation and circRNA function
计算和实验驱动的剪接调控和 circRNA 功能发现
- 批准号:
10565918 - 财政年份:2021
- 资助金额:
$ 11.01万 - 项目类别:
Unbiased discovery of mechanisms regulating circRNA
circRNA调节机制的公正发现
- 批准号:
9332410 - 财政年份:2015
- 资助金额:
$ 11.01万 - 项目类别:
Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
- 批准号:
8773658 - 财政年份:2014
- 资助金额:
$ 11.01万 - 项目类别:
Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
- 批准号:
8976219 - 财政年份:2014
- 资助金额:
$ 11.01万 - 项目类别:
Discovering genomic rearrangements under selection in serious ovarian cancer
发现严重卵巢癌选择下的基因组重排
- 批准号:
8788508 - 财政年份:2014
- 资助金额:
$ 11.01万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
- 批准号:
EP/Z531856/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
- 批准号:
EP/Z531935/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
- 批准号:
EP/Z531947/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
- 批准号:
EP/Z531923/1 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant