Mechanisms of Nuclear and Cell Fusion in Yeast

酵母细胞核和细胞融合机制

基本信息

  • 批准号:
    8210925
  • 负责人:
  • 金额:
    $ 46.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1986
  • 资助国家:
    美国
  • 起止时间:
    1986-12-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our long-term objectives are to define the pathway by which two haploid yeast cells fuse to become one diploid cell. Related to fertilization, conjugation is a fundamental process common to all sexually reproducing organisms. Conjugation also has close parallels to cell fusion events during development. We propose to continue our analysis of genes required for two major steps in conjugation, cell fusion and nuclear envelope fusion. Many of the genes required for cell and nuclear fusion have homologs in all eukaryotic organisms and their study will provide important clues to human cell biology, fertility and disease. During development of multicellular organisms, cells transition from a proliferative state, devoted to cell division and lacking specialized functions, to a differentiated state, in which cell division ceases and specialized cell functions are expressed. Proliferation and differentiation are mutually exclusive states, and orderly development requires that cells shut down mitotic functions as they turn on the specialized functions related to differentiation. Indeed one hallmark of cancer is that cells tend to lose differentiated functions as they re- acquire the capacity for unrestrained proliferation. Thus the coordination of mitosis and differentiation is of vital importance. Similarly, when yeast cells conjugate, they must exit the cell cycle and express proteins required for cell and nuclear fusion. However, because gene expression begins before the completion of the previous cell cycle, and because several proteins required for conjugation have other mitotic functions, yeast cells face the additional challenge of having to prevent premature activation of conjugation. The major goal of this project is to identify the specific effects of premature activation of mating functions, and identify the genes/proteins that are toxic when prematurely activated. As a specific example, we aim to understand the controls governing a key regulator of cell fusion, Fus2p, whose localization is under extraordinarily complex regulation by both the cell cycle and conjugation. Fus2p's regulation therefore serves as a central paradigm for the transition between mitosis and conjugation. We hypothesize that the regulation of Fus2p localization prevents interference with cell-cycle completion, which we will test this by identifying the downstream pathways regulated by Fus2p. We will examine the behavior of other key proteins co-opted during mating to determine if regulated localization is a general mechanism to prevent cell-cycle interference,. At the culmination of conjugation, the two nuclear envelopes fuse to create a single diploid nucleus. Because the nuclear envelope is composed of two membranes, two distinct fusion events occur in a coordinated fashion, and fusion of the inner membranes must be catalyzed by as yet unknown proteins. We hypothesize that Kar5p, a novel conjugation-induced protein, couples the inner and outer nuclear envelopes during fusion and facilitates inner-membrane fusion. Nuclear envelope fusion may be excellent paradigm for ER remodeling, an example of a critical mitotic process co-opted to serve a different function during conjugation. Public Health Relevance: As organisms grow and develop their cells transition from proliferation, when they are dividing, but lack specialized functions, to differentiation, when cell division stops and they acquire specialized functions. Successful development requires that cells not turn on the specialized functions while they are trying divide; one hallmark of cancer is that cells lose their specialized functions as they regain the capacity for unrestrained division. This project addresses the same problem in a model organism, baker's yeast, which carefully regulates the transition from cell division to being able to mate, using genes similar to human genes with relevance to human cell biology, fertility and disease.
描述(由申请人提供):我们的长期目标是确定两个单倍体酵母细胞融合成为一个二倍体细胞的途径。与受精有关,交配是所有有性生殖生物共同的基本过程。在发育过程中,偶联也与细胞融合事件有密切的相似之处。我们建议继续我们的基因分析需要在两个主要步骤的结合,细胞融合和核膜融合。细胞和核融合所需的许多基因在所有真核生物中都有同源物,它们的研究将为人类细胞生物学、生育和疾病提供重要线索。在多细胞生物的发育过程中,细胞从增殖状态(专注于细胞分裂,缺乏特化功能)过渡到分化状态(细胞分裂停止,细胞特化功能表达)。增殖和分化是相互排斥的状态,有序的发育要求细胞在开启与分化相关的特殊功能时关闭有丝分裂功能。事实上,癌症的一个特征是,当细胞重新获得无限制增殖的能力时,它们往往会失去分化的功能。因此有丝分裂和分化的协调是至关重要的。同样,当酵母细胞结合时,它们必须退出细胞周期并表达细胞和核融合所需的蛋白质。然而,由于基因表达在前一个细胞周期完成之前就开始了,并且由于偶联所需的几种蛋白质具有其他有丝分裂功能,酵母细胞面临着必须防止过早激活偶联的额外挑战。该项目的主要目标是确定过早激活交配功能的具体影响,并确定过早激活时有毒的基因/蛋白质。作为一个具体的例子,我们旨在了解控制细胞融合的关键调节因子Fus2p的控制,其定位受到细胞周期和结合的异常复杂的调节。因此,Fus2p的调控是有丝分裂和接合之间转变的中心范例。我们假设Fus2p定位的调节可以防止对细胞周期完成的干扰,我们将通过鉴定由Fus2p调节的下游途径来验证这一点。我们将研究在交配过程中增选的其他关键蛋白的行为,以确定调节定位是否是防止细胞周期干扰的一般机制。在结合的顶点,两个核包膜融合形成一个二倍体核。由于核膜由两层膜组成,两种不同的融合事件以协调的方式发生,而内膜的融合必须由未知的蛋白质催化。我们假设Kar5p是一种新的偶联诱导蛋白,在融合过程中偶联内外核膜,促进内膜融合。核膜融合可能是内质网重构的绝佳范例,这是一个关键的有丝分裂过程在接合过程中被选择服务于不同功能的例子。公共卫生相关性:随着生物体的生长和发育,它们的细胞从增殖(当它们分裂但缺乏特化功能时)过渡到分化(当细胞分裂停止并获得特化功能时)。成功的发育要求细胞在试图分裂时不开启特殊功能;癌症的一个特征是细胞失去了它们的特殊功能,因为它们重新获得了无限制分裂的能力。该项目在一种模式生物——面包酵母中解决了同样的问题,它使用与人类细胞生物学、生育和疾病相关的基因类似的人类基因,仔细调节从细胞分裂到能够交配的过渡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark David Rose其他文献

Mark David Rose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark David Rose', 18)}}的其他基金

Differentiation in Yeast: Mechanisms of Mating and Meiosis
酵母的分化:交配和减数分裂的机制
  • 批准号:
    10227983
  • 财政年份:
    2018
  • 资助金额:
    $ 46.62万
  • 项目类别:
Differentiation in Yeast: Mechanisms of Mating and Meiosis
酵母的分化:交配和减数分裂的机制
  • 批准号:
    10458640
  • 财政年份:
    2018
  • 资助金额:
    $ 46.62万
  • 项目类别:
Mechanisms of Nuclear and Cell Fusion in Yeast
酵母细胞核和细胞融合机制
  • 批准号:
    7931509
  • 财政年份:
    2009
  • 资助金额:
    $ 46.62万
  • 项目类别:
ZEISS LSM 510 META CONFOCAL MICROSOPE: CELL & MOLECULAR BIOLOGY
ZEISS LSM 510 META 共焦显微镜:细胞
  • 批准号:
    7335231
  • 财政年份:
    2006
  • 资助金额:
    $ 46.62万
  • 项目类别:
ZEISS LSM 510 META CONFOCAL MICROSOPE: HERPES VIRUS
ZEISS LSM 510 META 共焦显微镜:疱疹病毒
  • 批准号:
    7335229
  • 财政年份:
    2006
  • 资助金额:
    $ 46.62万
  • 项目类别:
Zeiss LSM 510 Meta Confocal Microsope
Zeiss LSM 510 Meta 共焦显微镜
  • 批准号:
    7046637
  • 财政年份:
    2006
  • 资助金额:
    $ 46.62万
  • 项目类别:
ZEISS LSM 510 META CONFOCAL MICROSOPE: CANCER
ZEISS LSM 510 META 共焦显微镜:癌症
  • 批准号:
    7335230
  • 财政年份:
    2006
  • 资助金额:
    $ 46.62万
  • 项目类别:
A DECONVOLUTION MICROSCOPE FOR CELL BIOLOGICAL RESEARCH
用于细胞生物学研究的解卷积显微镜
  • 批准号:
    6291344
  • 财政年份:
    2001
  • 资助金额:
    $ 46.62万
  • 项目类别:
GENETICS OF CENTRIN AND THE SPINDLE POLE BODY IN YEAST
酵母中心蛋白和纺锤体的遗传学
  • 批准号:
    6519646
  • 财政年份:
    1995
  • 资助金额:
    $ 46.62万
  • 项目类别:
GENETICS OF THE YEAST MICROTUBULE ORGANIZING CENTER
酵母微管组织中心的遗传学
  • 批准号:
    2191585
  • 财政年份:
    1995
  • 资助金额:
    $ 46.62万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 46.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了