To quantify deformable image registration errors in IGRT
量化 IGRT 中的可变形图像配准误差
基本信息
- 批准号:8267711
- 负责人:
- 金额:$ 29.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAgreementAlgorithmsBiologicalCancer PatientCaringClinicComputer SimulationData SetDevicesDoseElasticityElectromagneticsEnsureFeedbackGoalsImageInvestigationMalignant neoplasm of lungMalignant neoplasm of prostateManualsMapsMeasurementMechanicsMethodsModelingMonte Carlo MethodOrganPatientsProceduresProcessRadiation therapyRecipeRetinal ConeSimulateSystemTechniquesTherapeuticTimeTissuesbasecohortcone-beam computed tomographydesignimage registrationimprovedindexingnovelnovel strategiespopulation basedprocess optimizationpublic health relevancereconstructionresearch studysimulationtheoriestooltool developmenttreatment planningtumorvector
项目摘要
DESCRIPTION (provided by applicant): The purpose of this study is to develop a novel and systematic method to identify deformable image registration (DIR) errors and related dosimetric consequences in image-guided radiotherapy. The accuracy of the DIR and dose reconstruction process is central to determining whether or not the dose delivered to the patient is in agreement with the planned dose distribution. As we begin to reduce planning margins, based on the assurance afforded by daily imaging, and the introduction of real-time targeting devices (e.g. electromagnetic beacons), the impact of tumor (and surrounding organ) deformation may become a limiting factor in accurate targeting of the tumor. Under such circumstances, and regardless of whether on-line or off- line, adaptive corrections are applied, the accuracy of the image registration and dose reconstruction process becomes critical in evaluating the actual dose delivered to the tumor and surrounding healthy tissues. The long-term objective of this application is to ensure that each patient's treatment plan is properly adapted to account for DIR displacement and dose-related errors, to improve targeting accuracy and provide optimal sparing of healthy tissues. To accomplish the goals of this proposal, we will: (1a) Develop a novel elasticity-based model, founded on the concepts of unbalanced forces and energies, to quantify displacement vector field (DVF) errors in deformable image registration, and verify the results against measurements in a deformable phantom; (1b) Apply the method to a large number image datasets of prostate and lung cancer patients previously treated using daily CBCT imaging; (2) Perform dose reconstruction using tri-linear dose interpolation and Monte Carlo-based energy mapping and quantify the resulting dosimetric errors on the patient image datasets; (3) Develop methods to compensate for dose errors from DVF-based displacement errors; (3a) Develop a dose reconstruction system using an optimization process to minimize errors in the dose by incorporating feedback based on the quantified DVF-based dose errors; (3b) Quantify the dosimetric errors as a function of planning margin and develop a margin recipe to account for DVF-related dose errors based on registrations of daily cone-beam CT (CBCT) images with simulation CT images for a large group of prostate and lung cancer patients treated retrospectively.
PUBLIC HEALTH RELEVANCE: We will investigate methods for quantifying deformable image registration (DIR) errors and related dosimetric consequences. DIR and dose reconstruction are principle processes in adaptive radiotherapy and are essential requirements for computation of the actual dose delivered to the patient. A feedback system will be developed to minimize the quantified errors and we will formulate margin recipes to account for them in treatment planning.
描述(由申请人提供):本研究的目的是开发一种新的系统性方法,以识别图像引导放射治疗中的变形图像配准(RDR)错误和相关剂量测定后果。剂量重建和剂量重建过程的准确性对于确定输送给患者的剂量是否与计划的剂量分布一致至关重要。随着我们开始减少计划裕度,基于日常成像提供的保证,以及实时靶向设备(例如电磁信标)的引入,肿瘤(和周围器官)变形的影响可能成为肿瘤准确靶向的限制因素。在这样的情况下,并且无论应用在线还是离线自适应校正,图像配准和剂量重建过程的准确性在评估递送到肿瘤和周围健康组织的实际剂量时变得至关重要。本申请的长期目标是确保每名患者的治疗计划都经过适当调整,以考虑放射性位移和剂量相关误差,提高靶向准确性并提供最佳的健康组织保护。(1a)建立一种基于不平衡力和能量概念的新的弹性模型,以量化可变形图像配准中的位移矢量场(DVF)误差,并根据可变形体模中的测量结果验证结果;(1b)将该方法应用于先前使用每日CBCT成像治疗的前列腺癌和肺癌患者的大量图像数据集;(2)使用三线性剂量插值和基于蒙特卡罗的能量映射进行剂量重建,并量化患者图像数据集上的剂量测定误差;(3)开发补偿基于DVF的位移误差的剂量误差的方法;(3a)使用优化过程开发剂量重建系统,以通过结合基于量化的基于DVF的剂量误差的反馈来最小化剂量误差;(3b)将剂量测定误差量化为计划裕度的函数,并制定裕度配方以说明DVF-基于每日锥形束CT(CBCT)图像与模拟CT图像配准的相关剂量误差,用于回顾性治疗的一大组前列腺癌和肺癌患者。
公共卫生相关性:我们将研究量化可变形图像配准(VIM)误差和相关剂量测定后果的方法。剂量重建是自适应放射治疗中的主要过程,并且是计算递送到患者的实际剂量的基本要求。我们会发展一套反馈系统,以尽量减少量化误差,并会制订边际处方,以在治疗计划中考虑这些误差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hualiang Zhong其他文献
Hualiang Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hualiang Zhong', 18)}}的其他基金
To quantify deformable image registration errors in IGRT
量化 IGRT 中的可变形图像配准误差
- 批准号:
8471663 - 财政年份:2010
- 资助金额:
$ 29.49万 - 项目类别:
To quantify deformable image registration errors in IGRT
量化 IGRT 中的可变形图像配准误差
- 批准号:
7992042 - 财政年份:2010
- 资助金额:
$ 29.49万 - 项目类别:
To quantify deformable image registration errors in IGRT
量化 IGRT 中的可变形图像配准误差
- 批准号:
8097221 - 财政年份:2010
- 资助金额:
$ 29.49万 - 项目类别:
To quantify deformable image registration errors in IGRT
量化 IGRT 中的可变形图像配准误差
- 批准号:
8677763 - 财政年份:2010
- 资助金额:
$ 29.49万 - 项目类别:
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 29.49万 - 项目类别:
Standard Grant