Flexible statistical machine learning techniques for cancer-related data
用于癌症相关数据的灵活统计机器学习技术
基本信息
- 批准号:8204935
- 负责人:
- 金额:$ 29.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBehaviorBioinformaticsBiologicalBiological MarkersBiologyBiomedical ResearchClassificationClinicalCollaborationsComplexDNA Microarray ChipDataData AnalysesData SetDevelopmentEngineeringFaceFamilyGene ExpressionGenesGenomicsGoalsGraphHumanLearningMachine LearningMalignant NeoplasmsMedicineMethodsMicroarray AnalysisModelingMorphologic artifactsOutcomePathway interactionsPhenotypePlayResearchRoleSamplingScientistStatistical MethodsStatistical ModelsStructureTechniquesTechnologyTestingThe Cancer Genome AtlasUNC Lineberger Comprehensive Cancer CenterValidationVariantWorkanticancer researchbasecancer geneticscancer genomicsflexibilityinsightnovelnovel strategiespractical applicationpredictive modelingpublic health relevanceskillsstatisticssuccesstooltumor
项目摘要
DESCRIPTION (provided by applicant): Gene expression provides a snapshot of the cellular changes that promote tumor malignancy. Quantitative gene expression analysis, especially as implemented by DNA microarrays, has identified many new important cancer related genes and led to the development of new genomic-based clinical tests. For the quantitative aspect of gene expression analysis, many statistical methods have been used to study human tumors and to classify them into groups that can be used to predict clinical behavior. Despite progress, with the rapid advance of technology, massive and complex data are being generated in cancer research. Analyzing such data becomes more and more challenging. These challenges call for novel statistical learning methods, especially for high dimensional and noisy data. The goal of this project is to develop a host of new statistical learning techniques for solving complicated learning problems. In particular, this project develops (1) novel techniques to assess statistical significance of clustering for high dimensional data; (2) several novel predictive models including classification and regression which are expected to yield highly competitive accuracy and interpretability; (3) new methods for high dimensional biomarker/variable selection; (4) new approaches to estimate high dimensional covariance/precision matrix for biological network construction. These new developments are expected to allow scientists to analyze complex cancer genomic data with accurate prediction accuracy and increased interpretability. The research team will apply the proposed techniques to cancer research data analysis. The success of this project will be important in bridging statistical machine learning and cancer research.
PUBLIC HEALTH RELEVANCE: This project aims to develop a host of new statistical learning techniques for solving complicated learning problems, especially for problems with high dimensional and noisy data such as gene expression data. These new techniques are expected to allow scientists to analyze complex cancer genomic data with accurate prediction accuracy and increased interpretability.
描述(由申请人提供):基因表达提供了促进肿瘤恶性的细胞变化的快照。定量基因表达分析,特别是通过DNA微阵列实现的定量基因表达分析,已经鉴定了许多新的重要癌症相关基因,并导致了新的基于基因组的临床测试的发展。对于基因表达分析的定量方面,许多统计方法已用于研究人类肿瘤并将其分类为可用于预测临床行为的组。尽管取得了进展,但随着技术的迅速发展,癌症研究中产生了大量复杂的数据。分析这些数据变得越来越具有挑战性。这些挑战需要新的统计学习方法,特别是对于高维和噪声数据。该项目的目标是开发一系列新的统计学习技术来解决复杂的学习问题。特别是,该项目开发了(1)评估高维数据聚类统计意义的新技术;(2)几种新的预测模型,包括分类和回归,预计将产生高度竞争力的准确性和可解释性;(3)高维生物标志物/变量选择的新方法;(4)估计高维协方差/精度矩阵的新方法。这些新的发展预计将使科学家能够分析复杂的癌症基因组数据,具有准确的预测精度和更高的可解释性。研究小组将把提出的技术应用于癌症研究数据分析。该项目的成功对于连接统计机器学习和癌症研究至关重要。
公共卫生相关性: 该项目旨在开发一系列新的统计学习技术来解决复杂的学习问题,特别是涉及基因表达数据等高维和噪声数据的问题。预计这些新技术将使科学家能够分析复杂的癌症基因组数据,具有准确的预测精度和更高的可解释性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Montse Fuentes其他文献
Montse Fuentes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Montse Fuentes', 18)}}的其他基金
Support for the Fourth International Joint IMS-ISBA Conference
支持第四届 IMS-ISBA 国际联合会议
- 批准号:
8062868 - 财政年份:2010
- 资助金额:
$ 29.25万 - 项目类别:
Space-time Modeling for Linking Climate Change,Pollutant Exposure, Built Environm
连接气候变化、污染物暴露、建筑环境的时空模型
- 批准号:
8187476 - 财政年份:2007
- 资助金额:
$ 29.25万 - 项目类别:
A Spatial-Temporal Modleing Approach for Environmental Epidemiological Data
环境流行病学数据的时空建模方法
- 批准号:
7540475 - 财政年份:2007
- 资助金额:
$ 29.25万 - 项目类别:
Space-time Modeling for Linking Climate Change,Pollutant Exposure, Built Environm
连接气候变化、污染物暴露、建筑环境的时空模型
- 批准号:
8323382 - 财政年份:2007
- 资助金额:
$ 29.25万 - 项目类别:
A Spatial-Temporal Modleing Approach for Environmental Epidemiological Data
环境流行病学数据的时空建模方法
- 批准号:
7738494 - 财政年份:2007
- 资助金额:
$ 29.25万 - 项目类别:
A Spatial-Temporal Modleing Approach for Environmental Epidemiological Data
环境流行病学数据的时空建模方法
- 批准号:
7387727 - 财政年份:2007
- 资助金额:
$ 29.25万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 29.25万 - 项目类别:
Studentship
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Continuing Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Standard Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 29.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)