Biomechanics and Inflammation in Cartilage
软骨的生物力学和炎症
基本信息
- 批准号:8379995
- 负责人:
- 金额:$ 32.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-15 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiochemicalBiological MarkersBiomechanicsBody Weight decreasedBody fatCartilageCharacteristicsChondrocytesChronicCollagenDegenerative polyarthritisDevelopmentDietDietary Fatty AcidDiseaseElementsEquilibriumExhibitsExtracellular MatrixFatty AcidsFatty acid glycerol estersGene ExpressionGenetic TranscriptionGoalsHomeostasisInflammationInflammation MediatorsInflammatoryInjuryInterleukin-1Joint InstabilityJointsKnee OsteoarthritisLeadLeptinLeptin deficiencyLinkMaintenanceMeasurementMeasuresMechanical StressMechanicsMedial meniscus structureMediator of activation proteinMessenger RNAMetabolicMetabolismMonounsaturated Fatty AcidsMorbid ObesityMusNitric OxideNonesterified Fatty AcidsObese MiceObesityOmega-3 Fatty AcidsOsteoarthrosis DeformansPainPathogenesisPathologyPlayProductionProstaglandinsProtein BiosynthesisRisk FactorsRoleSeveritiesSignal TransductionTNF geneTimeTissuesUnited StatesUnsaturated Fatty Acidsaggrecanarticular cartilagebasecytokinedb/db mousefeedingimprovedin vitro Modelin vivoinsightjoint loadinglardleptin receptormouse modelpreventpsychosocial
项目摘要
Osteoarthritis (OA) is a painful and debilitating disease of the synovial joints, affecting an estimated 21
million people in the United States. There is increasing evidence that local and systemic inflammatory
cytokines such as interleukin 1 (IL-1) and inflammatory mediators such as free fatty acids, nitric oxide, or
prostaglandins play a major role in OA pathogenesis and pain. Additionally, biomechanical loading plays an
important role in the normal homeostatic maintenance of the cartilage extracellular matrix, and under
abnormal conditions, mechanical stress may be a significant factor in the initiation and progression of OA.
Our governing hypothesis is that obesity causes OA through synergistic interactions of dietary and systemic
pro-inflammatory mediators, cytokines, and mechanical stress acting on the chondrocytes. The goal of this
project is to examine the influence of dietary fatty acids on obesity-associated OA in mice, and to examine
their interaction with altered biomechanical and pro-inflammatory cytokines using various in vivo and in vitro
models. We propose that low-grade chronic systemic inflammation ¿ due to obesity or pro-inflammatory
fatty acids in the diet ¿ acts in synergy with local inflammatory cytokines or altered mechanical loading (due
to obesity or joint instability) to promote a state of inflammation and matrix degradation in the articular
cartilage. We will pursue the following aims: In Aim 1, we will examine the role of a high-fat (lard-based) diet
in the development of OA in a leptin-receptor deficient mouse (db/db), and we will also measure
osteoarthritic changes in diet-induced obese mice fed high-fat diets high in saturated and monounsaturated
fatty acids, or omega-3 or omega-6 poly-unsaturated fatty acids. In Aim 2, we will examine the effects of
obesity (via high-fat diet or leptin deficiency) on the progression of OA in a destabilized medial meniscus
model of mouse OA. In Aim 3, we will use controlled in vitro models of cartilage explant loading to examine
the effects of mechanical stress in combination with pro-inflammatory cytokines (e.g., IL-1, leptin, TNF-a)
and fatty acids on the anabolic and catabolic activities of the chondrocytes, as measured by biomarker
production, real-time PCR measurements of mRNA transcription, and protein synthesis of collagen II and
aggrecan. Detailed studies of the interactions between specific biomechanical factors, pro-inflammatory
mediators, and tissue metabolism in articular cartilage will improve our understanding of the pathology of the
OA, particularly as it relates in vivo to "biomechanical" factors such as obesity, injury, or weight loss. The
results of this study will provide new insights into key elements of the pathogenesis of OA, and ultimately
could lead to new treatments that exploit mechanical, psychosocial, and biochemical therapies to prevent
disease.
骨关节炎(OA)是一种疼痛和使人虚弱的滑膜关节疾病,估计影响21
在美国的百万人。越来越多的证据表明,局部和全身炎症
细胞因子如白细胞介素1(IL-1)和炎症介质如游离脂肪酸、一氧化氮或
胡枝子素在OA发病机制和疼痛中起主要作用。此外,生物力学负荷起着
在软骨细胞外基质的正常稳态维持中起重要作用,
在异常情况下,机械应力可能是OA发生和发展的重要因素。
我们的主要假设是肥胖通过饮食和全身性的协同作用引起OA。
促炎介质、细胞因子和作用于软骨细胞的机械应力。这个目标
项目是检查膳食脂肪酸对小鼠肥胖相关OA的影响,并检查
它们与改变的生物力学和促炎细胞因子的相互作用,
模型我们认为,由于肥胖或促炎性疾病引起的低度慢性全身性炎症
饮食中的脂肪酸与局部炎性细胞因子或改变的机械负荷(由于
肥胖或关节不稳定)以促进关节中的炎症和基质降解状态
软骨我们将追求以下目标:在目标1中,我们将研究高脂肪(猪油为基础)饮食的作用
在瘦素受体缺陷小鼠(db/db)中OA的发展中,我们还将测量
饮食诱导的肥胖小鼠中的骨关节炎变化
脂肪酸或ω-3或ω-6多不饱和脂肪酸。在目标2中,我们将研究
肥胖(通过高脂饮食或瘦素缺乏)对不稳定内侧半月板OA进展的影响
小鼠OA模型。在目标3中,我们将使用受控的软骨外植体加载体外模型来检查
机械应力与促炎细胞因子(例如,IL-1、瘦素、TNF-α)
和脂肪酸对软骨细胞的合成代谢和分解代谢活性的影响,如通过生物标志物测量的
mRNA转录的实时PCR测量和胶原II的蛋白质合成,
聚集蛋白聚糖。详细研究了特定生物力学因素、促炎因子和炎症因子之间的相互作用,
介质,和组织代谢的关节软骨将提高我们的理解的病理,
OA,特别是因为它在体内与肥胖、受伤或体重减轻等“生物力学”因素有关。的
这项研究的结果将为OA发病机制的关键因素提供新的见解,并最终
可能导致新的治疗方法,利用机械,心理和生化疗法,以防止
疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farshid Guilak其他文献
Farshid Guilak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farshid Guilak', 18)}}的其他基金
Synthetic Chronogenetic Gene Circuits for Circadian Cell Therapies
用于昼夜节律细胞疗法的合成计时基因电路
- 批准号:
10797183 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
2023 Cartilage Biology and Pathology Gordon Research Conference and Gordon Research Seminar
2023年软骨生物学与病理学戈登研究会议暨戈登研究研讨会
- 批准号:
10605625 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Deconstructing Cartilage Mechanotransduction by Piezo Channels
通过压电通道解构软骨机械传导
- 批准号:
10533155 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
SMART stem cells that autonomously down-modulate TFG-β signaling for Articular Cartilage Repair
SMART 干细胞自主下调 TFG-β 信号传导以修复关节软骨
- 批准号:
10371823 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10707979 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
- 批准号:
10630757 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
- 批准号:
10598619 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
Genetically-engineered stem cells for self-regulating arthritis therapy
用于自我调节关节炎治疗的基因工程干细胞
- 批准号:
10434316 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
SMART stem cells that autonomously down-modulate TFG-β signaling for Articular Cartilage Repair
SMART 干细胞自主下调 TFG-β 信号传导以修复关节软骨
- 批准号:
10590752 - 财政年份:2022
- 资助金额:
$ 32.97万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 32.97万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 32.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows