Integrative Modeling of Regulatory Processes Using High-Throughput Genetic Data

使用高通量遗传数据的监管过程综合建模

基本信息

  • 批准号:
    8243806
  • 负责人:
  • 金额:
    $ 21.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose an interdisciplinary effort linking computational and experimental methods to analyze and model two processes integral to C. elegans physiology: programmed cell death and the regulation of the germline stem cell proliferation decision boundary. The broad aims are to quantify phenotypic variation using image analysis and pattern recognition tools, to use the extracted features and gene expression data to develop a causal model for the regulatory processes, and to validate the model experimentally. The first aim is focused on data collection and the automated scoring of phenotypes in the form of high throughput image acquisition and processing. The scope of the phenotypic data encompasses recombinant progeny from two parental C. elegans strains. The complex regulatory processes under investigation involve cellular-level attributes that are typically assayed via microscopy. We propose pattern recognition algorithms to automate phenotypic scoring. The second aim proposes novel methodology to build integrative models over the joint genotypic, expression and phenotypic datasets. We discuss how the combined genomic data offer immense potential for learning causal models. We propose a learning framework based on a novel modular Bayesian network platform that effectively reduces noise and data complexity. We elaborate on the use of complex optimization techniques designed to avoid local optima in the model scoring procedure. The third aim involves using our models to direct experimentation in efforts to dissect the genetic bases underlying the phenotypes. The causal models provide an explanation of how genetic variations lead to phenotypic change by modulating gene expression. Thus, the causal models can be thought of as "biological hypotheses," and promising experimental candidates can be inferred from the models. The proposed research will develop new techniques for synthesizing information from multiple data sources and will integrate these methods with experimental studies of genetic variation in a model research animal, C. elegans. The synergistic interplay of computational methods and experimental analyses will provide a paradigm for greatly accelerating biological discovery. The proposed research is transformative not only in the functionality that it offers to domain scientists but also in the innovative computational research that forms the basis for the work. PUBLIC HEALTH RELEVANCE: We will develop computational models for the analysis of complex biological regulatory processes using recent high-throughput biological data, including measurements of gene expression, parental genotype and physiological traits. Our models are designed to explain how various physiological traits change depending on the state of gene expression and parental genotype. The worm C. elegans offers a rich source of interesting physiological traits that are highly complex in terms of genetics. Therefore, these models will be useful for understanding complex diseases such as cancer.
描述(由申请人提供):我们提出了一个跨学科的努力,连接计算和实验方法来分析和模拟两个过程中不可或缺的C。线虫生理学:细胞程序性死亡与生殖系干细胞增殖调控的决定边界。广泛的目标是量化表型变异,使用图像分析和模式识别工具,使用提取的功能和基因表达数据来开发一个因果模型的监管过程,并验证模型的实验。第一个目标是集中在数据收集和高通量图像采集和处理形式的表型的自动评分。表型数据的范围包括来自两个亲本C. elegans菌株。正在调查的复杂的监管过程涉及细胞水平的属性,通常通过显微镜测定。我们提出模式识别算法来自动化表型评分。第二个目标提出了新的方法来建立综合模型的联合基因型,表达和表型数据集。我们讨论了组合的基因组数据如何为学习因果模型提供巨大的潜力。我们提出了一个学习框架的基础上,一个新的模块化贝叶斯网络平台,有效地降低噪声和数据的复杂性。我们详细介绍了使用复杂的优化技术,旨在避免局部最优的模型评分过程。第三个目标涉及使用我们的模型来指导实验,以努力剖析表型背后的遗传基础。因果模型提供了一个解释,遗传变异如何通过调节基因表达导致表型变化。因此,因果模型可以被认为是“生物学假设”,并且可以从模型中推断出有希望的实验候选者。拟议的研究将开发新的技术,用于综合来自多个数据源的信息,并将这些方法与模型研究动物C.优雅的计算方法和实验分析的协同相互作用将为大大加速生物发现提供一个范例。拟议的研究不仅在为领域科学家提供的功能方面具有变革性,而且在构成工作基础的创新计算研究方面也具有变革性。 公共卫生相关性:我们将使用最近的高通量生物数据,包括基因表达,亲本基因型和生理性状的测量,开发复杂的生物调控过程的分析计算模型。我们的模型旨在解释各种生理性状如何根据基因表达状态和亲本基因型而变化。蠕虫C.秀丽线虫提供了丰富的有趣的生理特征来源,这些特征在遗传学方面是高度复杂的。因此,这些模型将有助于理解复杂的疾病,如癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel H. Rothman其他文献

Joel H. Rothman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel H. Rothman', 18)}}的其他基金

A model for elimination of defective mitochondrial genomes
消除有缺陷的线粒体基因组的模型
  • 批准号:
    10043796
  • 财政年份:
    2020
  • 资助金额:
    $ 21.39万
  • 项目类别:
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
  • 批准号:
    10625331
  • 财政年份:
    2020
  • 资助金额:
    $ 21.39万
  • 项目类别:
A model for elimination of defective mitochondrial genomes
消除有缺陷的线粒体基因组的模型
  • 批准号:
    10266765
  • 财政年份:
    2020
  • 资助金额:
    $ 21.39万
  • 项目类别:
Developmental reprogramming and transorganogenesis
发育重编程和跨器官发生
  • 批准号:
    10588050
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:
UC Santa Barbara MARC Program: Bridges to Biomedical Research Careers
加州大学圣巴巴拉分校 MARC 项目:通向生物医学研究职业的桥梁
  • 批准号:
    8856392
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:
Developmental reprogramming and transorganogenesis
发育重编程和跨器官发生
  • 批准号:
    8888152
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:
Plasticity in an embryonic gene regulatory network
胚胎基因调控网络的可塑性
  • 批准号:
    10299492
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:
Plasticity in an embryonic gene regulatory network
胚胎基因调控网络的可塑性
  • 批准号:
    9020247
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:
Mechanisms of Developmental Fidelity
发展忠诚度机制
  • 批准号:
    9104165
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:
Mechanisms of Developmental Fidelity
发展忠诚度机制
  • 批准号:
    8954933
  • 财政年份:
    2015
  • 资助金额:
    $ 21.39万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 21.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了