Design & Synthesis of Nonpeptide Protease Inhibitors
设计
基本信息
- 批准号:8324992
- 负责人:
- 金额:$ 35.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-04-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeActive SitesAddressAdherenceAdverse effectsAntiviral AgentsBindingBiochemicalBiologicalBiological AssayCaco-2 CellsCellsCessation of lifeChildChildhoodClinicalCollaborationsComplexDevelopmentDimerizationDiseaseDrug Delivery SystemsDrug DesignDrug KineticsDrug resistanceEffectivenessEnzymesEpidemicEvaluationExhibitsFDA approvedFutureGenerationsHIVHIV-1Highly Active Antiretroviral TherapyHydrogen BondingInfectionInterdisciplinary StudyKineticsLaboratoriesLaboratory AnimalsLettersLifeLife ExpectancyLigand BindingLigandsMedicalMedical HistoryMolecularMolecular ModelsMulti-Drug ResistanceNational Cancer InstituteOrphanPatientsPeptide HydrolasesPharmaceutical PreparationsPrincipal InvestigatorPropertyProtease InhibitorProtein BiosynthesisQuality of lifeRegimenRelative (related person)ReportingResearchResistanceResistance profileRoentgen RaysSeriesStructureTherapeuticToxic effectTreatment FailureTreatment ProtocolsUncertaintyUniversitiesVariantVertebral columnViralVirusVirus DiseasesVirus ReplicationX-Ray Crystallographybasecombatdesigndrug developmentexperienceimprovedinhibitor/antagonistinnovationinsightmolecular modelingmultidisciplinarymutantnext generationnovelpandemic diseasepillprofessorprogramsscaffoldsmall moleculetool
项目摘要
DESCRIPTION (provided by applicant): Acquired immunodeficiency syndrome (AIDS) is one of the most destructive epidemics in medical history. In 2009, the UNAIDS report estimated that 35 million people are living with human immunodeficiency virus (HIV) infection and AIDS, 25 million deaths have occurred, and 14 million children have been orphaned since the epidemic began in 1981. The discovery of HIV, the etiological agent for AIDS, led to the identification of a number of biochemical targets to combat this devastating disease. Among them, therapeutic inhibition of a proteolytic enzyme, HIV-1 protease, emerged as a critical drug-development target. Subsequent design and discovery of protease inhibitors (PIs) and their introduction into the highly active antiretroviral therapy (HAART), marked the beginning of a new era of management of HIV-1 infection and AIDS. HAART significantly improved the quality of life and life expectancy of patients. There is no cure for HIV/AIDS and long-term treatment has posed a serious challenge because of the emergence of multidrug-resistant HIV-1 variants. About 40-50% of those patients who initially achieved favorable viral suppression to undetectable levels experienced treatment failure. These drug-resistant HIV strains can be transmitted, raising further uncertainty with respect to future treatment options. In addition, PIs are faced with a number of serious limitations including, major toxicity, tolerance, and adherence to complex medical regimens. The development of a new generation of PIs effective against drug-resistant HIV and with minimum side effects, are vital to the future management of HIV/AIDS.
Our collaborative research efforts to combat drug resistance, led to the development of darunavir which was first approved for treatment against drug-resistant HIV in June, 2006, and then received full approval for all HIV/AIDS patients including pediatric patients in December, 2008. While darunavir has become a front line therapy against HIV/AIDS, it is far from ideal as an effective long-term treatment option. During this project period, based upon X-ray crystal structures of complexes of darunavir or other PIs with HIV-1 protease, we designed and synthesized a diverse class of potent PIs with marked antiviral activity, and excellent drug-resistance profiles against multidrug-resistant HIV-1 strains. We have also developed tools and important 'backbone binding' design concepts to combat drug-resistance. Furthermore, we have discovered a number of small molecule nonpeptide structural leads for optimization. A recent inhibitor, GRL-0519, has consistently shown a 10-fold improvement of potency compared to darunavir against a panel of multidrug-resistant HIV-1 variants. This PI also exhibited 10-fold better dimerization inhibitory properties of HIV-1 protease. Our current proposed studies are now focused on design, synthesis, and evaluation of the next generation of PIs for clinical development. Our multidisciplinary research efforts integrate structure-based design, synthesis, protein-ligand X-ray crystallography, inhibition kinetics, molecular modeling, and in-depth virus and cell-biological studies.
描述(申请人提供):获得性免疫缺陷综合症(艾滋病)是医学史上最具破坏性的流行病之一。2009年,联合国艾滋病规划署的报告估计,自1981年艾滋病流行以来,有3500万人感染艾滋病毒和艾滋病,2500万人死亡,1400万儿童成为孤儿。艾滋病的病原体艾滋病毒的发现导致了一些生化目标的确定,以对抗这种毁灭性的疾病。其中,对蛋白水解酶HIV-1蛋白水解酶的治疗抑制成为关键的药物开发目标。随后设计和发现了蛋白酶抑制剂(PI),并将其引入高效抗逆转录病毒疗法(HAART),标志着HIV-1感染和艾滋病管理的新纪元的开始。HAART显著提高了患者的生活质量和预期寿命。艾滋病毒/艾滋病无法治愈,由于出现了具有多药耐药性的艾滋病毒-1变种,长期治疗构成了严重的挑战。在那些最初实现了良好的病毒抑制到无法检测到的水平的患者中,大约有40%-50%的患者经历了治疗失败。这些具有抗药性的艾滋病毒毒株可以传播,这增加了未来治疗选择的进一步不确定性。此外,PI还面临一些严重的限制,包括重大毒性、耐受性和坚持复杂的医疗方案。开发对抗药性艾滋病毒有效且副作用最小的新一代PI对未来艾滋病毒/艾滋病的管理至关重要。
我们对抗耐药性的合作研究工作导致了达鲁那韦的开发,该药于2006年6月首次被批准用于抗药性艾滋病毒的治疗,然后在2008年12月获得全面批准用于所有艾滋病毒/艾滋病患者,包括儿科患者。虽然达鲁那韦已经成为对抗艾滋病毒/艾滋病的一线疗法,但作为一种有效的长期治疗选择,它远不是理想的。在本项目期间,我们基于达鲁那韦或其他PI与HIV-1蛋白酶的络合物的X射线晶体结构,设计并合成了多种高效的PI,它们具有显著的抗病毒活性,并对多重耐药的HIV-1毒株具有良好的耐药性。我们还开发了工具和重要的“主干结合”设计概念来对抗耐药性。此外,我们还发现了一些用于优化的小分子非肽结构先导化合物。最近的一种抑制剂GRL-0519对一组多药耐药的HIV-1变种的效力一直比达鲁那韦提高10倍。该等电点还表现出比HIV-1蛋白酶高10倍的二聚化抑制特性。我们目前建议的研究集中在临床开发的下一代PI的设计、合成和评估上。我们的多学科研究工作包括基于结构的设计、合成、蛋白质-配体X射线结晶学、抑制动力学、分子建模以及深入的病毒和细胞生物学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(25)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARUN K GHOSH其他文献
ARUN K GHOSH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARUN K GHOSH', 18)}}的其他基金
SARS-CoV-2 protease inhibitors for treating COVID-19
用于治疗 COVID-19 的 SARS-CoV-2 蛋白酶抑制剂
- 批准号:
10669064 - 财政年份:2021
- 资助金额:
$ 35.87万 - 项目类别:
SARS-CoV-2 protease inhibitors for treating COVID-19
用于治疗 COVID-19 的 SARS-CoV-2 蛋白酶抑制剂
- 批准号:
10465085 - 财政年份:2021
- 资助金额:
$ 35.87万 - 项目类别:
SARS-CoV-2 protease inhibitors for treating COVID-19
用于治疗 COVID-19 的 SARS-CoV-2 蛋白酶抑制剂
- 批准号:
10190507 - 财政年份:2021
- 资助金额:
$ 35.87万 - 项目类别:
Inhibition and mechanism of flavivirus methyltransferase
黄病毒甲基转移酶的抑制及其机制
- 批准号:
8230826 - 财政年份:2011
- 资助金额:
$ 35.87万 - 项目类别:
Inhibition and mechanism of flavivirus methyltransferase
黄病毒甲基转移酶的抑制及其机制
- 批准号:
8097087 - 财政年份:2011
- 资助金额:
$ 35.87万 - 项目类别:
Inhibition and mechanism of flavivirus methyltransferase
黄病毒甲基转移酶的抑制及其机制
- 批准号:
8610232 - 财政年份:2011
- 资助金额:
$ 35.87万 - 项目类别:
Inhibition and mechanism of flavivirus methyltransferase
黄病毒甲基转移酶的抑制及其机制
- 批准号:
8434274 - 财政年份:2011
- 资助金额:
$ 35.87万 - 项目类别:
DESIGN AND SYNTHESIS OF NONPEPTIDE PROTEASE INHIBITORS
非肽蛋白酶抑制剂的设计与合成
- 批准号:
7922372 - 财政年份:2009
- 资助金额:
$ 35.87万 - 项目类别:
DEVELOPMENT OF LIGAND ASSISTED ASYMMETRIC SYNTHESES
配体辅助不对称合成的开发
- 批准号:
6138561 - 财政年份:1998
- 资助金额:
$ 35.87万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 35.87万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别:
Discovery Grants Program - Individual