The RAN GTPase
RAN GTP 酶
基本信息
- 批准号:8574524
- 负责人:
- 金额:$ 34.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAgingAnimal ModelApoptosisAreaBindingBiologicalBiological PreservationBiological ProcessCell LineCell divisionCellsCentromereChimeric ProteinsChromatinChromosomesCiliaDNADefectEmbryoEnzymesEukaryotic CellExcisionFibroblastsFundingGeneticGenomic InstabilityGuanine Nucleotide Exchange FactorsGuanosine Triphosphate PhosphohydrolasesHela CellsKinetochoresKnockout MiceLaboratoriesLifeMalignant NeoplasmsMass Spectrum AnalysisMethylationMethyltransferaseMitosisMitoticMitotic ChromosomeModelingModificationMusMutationN-terminalNamesNuclearNuclear EnvelopeNuclear ExportOncogene ProteinsOther GeneticsPhosphorylationPlayPost-Translational Protein ProcessingPremature aging syndromeProteinsReagentRegulationRoleRunningSignal TransductionTailTestingTumor Suppressor ProteinsVirus Diseasesamino groupcentromere autoantigen 80Kcentromere protein Aenzyme activitygenetic manipulationinsightinterestmeetingsmutantnovelnucleocytoplasmic transportpreventsegregationtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): RCC1 is a guanine nucleotide exchange factor for the Ran GTPase. It plays vital roles in all eukaryotic cells - in nuclear transport, spindle formation, nuclear envelope formation, and primary cilium formation. It has also been implicated in aging, cancer, and viral infection. RCC1 associates with chromatin, and generates a RanGTP gradient around mitotic chromosomes. We identified a new post-translational modification of RCC1, in which the initiating Met residue is excised, and the exposed 1-amino group is methylated. Mon- methylatable mutants of RCC1 cause mitotic defects. We have identified the 1-N-methyltransferase responsible for this modification, which we named NRMT. Other interesting targets for methylation by NRMT include the tumor suppressor protein RB. Silencing of NRMT causes mitotic defects. Given the pivotal importance of RCC1 function, its regulation by 1-N-methylation, and the high biological significance of this unusual modification, we plan to focus on the following aims: 1. Are current models for RCC1 regulation correct? It has been proposed that RCC1 cycles dynamically on and off chromatin, as an essential part of its catalytic action, and that phosphorylation of the N-terminal tail stabilizes chromatin association during mitosis. We will rigorously test this model, by replacing endogenous RCC1 with tethered fusion proteins and phosphorylation mutants. We will ask if RCC1 dynamics are important in mitosis and apoptosis. Using an animal model, we will also test whether Ran and RCC1 are involved in tumorigenesis. 2. Identification of the biological functions of NRMT, using a knockout mouse and MEFs. We will generate KO mice lacking NRMT, and ask if the mice display increased levels of chromosome mis- segregation. To determine if weakened association of RCC1 with chromatin is the primary defect we will express a chromatin-tethered RCC1 in KO MEFs and ask if we rescue normal mitosis. We propose the hypothesis that a general function for this modification is to facilitate chromatin binding. Loss of RB causes genomic instability, and we will test if a non-methylatable RB causes similar defects, and if such defects are connected to its recruitment of CAP-3D to centromeres. 3. Determination of control mechanisms for 1-N-methylation. The nuclear localization of NRMT might limit access to certain target proteins, thereby preventing them from being methylated. To test this idea, we will "knock sideways" the NRMT by expressing a version of the enzyme that possesses a nuclear export signal. Methylated proteins will be compared by mass spectrometry to cells expressing wild type NRMT. A second hypothesis is that there exists a cytoplasmic demethylase. We will use cytoplasmic extracts to purify such an enzyme activity. Finally, we discovered that in HeLa cells, which express the E7 oncoprotein, RB is not detectably methylated. We will address the underlying mechanism that blocks RB methylation in these cells.
描述(由申请人提供):RCC 1是Ran GT的鸟嘌呤核苷酸交换因子。它在所有真核细胞中起重要作用-在核运输,纺锤体形成,核膜形成和初级纤毛形成中。它也与衰老、癌症和病毒感染有关。RCC 1与染色质结合,并在有丝分裂染色体周围产生RanGTP梯度。我们发现了RCC 1的一种新的翻译后修饰,其中起始Met残基被切除,暴露的1-氨基被甲基化。RCC 1的非甲基化突变体引起有丝分裂缺陷。我们已经确定了负责这种修饰的1-N-甲基转移酶,我们将其命名为NRMT。NRMT甲基化的其他感兴趣的靶点包括肿瘤抑制蛋白RB。NRMT沉默导致有丝分裂缺陷。鉴于RCC 1功能的关键重要性,其通过1-N-甲基化的调节,以及这种不寻常的修饰的高度生物学意义,我们计划专注于以下目标:1. RCC 1调节的当前模型是否正确?已经提出,RCC 1动态地在染色质上和染色质上循环,作为其催化作用的重要部分,并且N-末端尾部的磷酸化在有丝分裂期间稳定染色质缔合。我们将严格测试这个模型,用系留融合蛋白和磷酸化突变体取代内源性RCC 1。我们将询问RCC 1动力学在有丝分裂和凋亡中是否重要。使用动物模型,我们还将测试Ran和RCC 1是否参与肿瘤发生。2.使用基因敲除小鼠和MEFs鉴定NRMT的生物学功能。我们将产生缺乏NRMT的KO小鼠,并询问小鼠是否表现出增加的染色体错误分离水平。为了确定RCC 1与染色质的弱结合是否是主要缺陷,我们将在KO MEFs中表达染色质束缚的RCC 1,并询问我们是否挽救了正常的有丝分裂。我们提出的假设,这种修饰的一般功能是促进染色质结合。RB的缺失导致基因组不稳定性,我们将测试不可甲基化的RB是否导致类似的缺陷,以及这些缺陷是否与CAP-3D向着丝粒的募集有关。3. 1-N-甲基化的控制机制的确定。NRMT的核定位可能会限制某些靶蛋白的进入,从而防止它们被甲基化。为了验证这一想法,我们将通过表达一种具有核输出信号的酶来“敲侧”NRMT。将通过质谱法将甲基化蛋白与表达野生型NRMT的细胞进行比较。第二个假设是存在细胞质脱甲基酶。我们将使用细胞质提取物来纯化这种酶活性。最后,我们发现在表达E7癌蛋白的HeLa细胞中,RB没有可检测的甲基化。我们将探讨在这些细胞中阻断RB甲基化的潜在机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IAN G MACARA其他文献
IAN G MACARA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IAN G MACARA', 18)}}的其他基金
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Continuing Grant