Mechanisms of HCN regulation by accessory subunit Trip8b using fluorescence and e
利用荧光和 e 辅助亚基 Trip8b 调节 HCN 的机制
基本信息
- 批准号:8335533
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-16 至 2014-09-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAlternative SplicingAmino AcidsBindingBiological AssayBiophysicsBrainC-terminalCardiacCationsCell surfaceComplexCyclic AMPCyclic NucleotidesCytoplasmic ProteinDNA Sequence RearrangementDataDendritesDendritic CellsDependenceDiseaseDistalElectrophysiology (science)EpilepsyFigs - dietaryFluorescenceFluorometryGoalsHeartHomeostasisIndividualIon ChannelLeadLigand BindingLong-Term PotentiationLongitudinal StudiesMeasuresMembraneMembrane PotentialsMental DepressionMethodsMindMovementMutagenesisNeuronsPacemakersParkinson DiseasePatternPeptidesPeripheralPhosphorylationPhysiologicalPlayProtein BindingProtein KinaseProteinsPublishingRNA SplicingRegulationRestRoleSignal TransductionSiteSpecific qualifier valueStatus EpilepticusStretchingStructureSurfaceSynaptic TransmissionSystemTechniquesTestingTissuesVariantWorkbasecyclic-nucleotide gated ion channelsdensityfluorophorehippocampal pyramidal neuronimprovedin vivoinfancyinterestneuronal cell bodypainful neuropathypatch clampreceptorrelating to nervous systemsingle moleculesmall moleculestoichiometrytraffickingvoltage
项目摘要
Project Summary
HCN channels play a critical physiological role in many tissues including the brain and heart. These channels are responsible for pacemaker activity in both cardiac and neuronal cells, dendritic integration, and setting resting membrane potentials[1]. HCN channels have also been implicated in many pathophysiological conditions including epilepsy, peripheral neuropathic pain and Parkinson¿s disease[2-5].
In 2004, an accessory protein of HCN channels, termed Trip8b, was discovered by Santora and Colleagues[6]. More recently, three simultaneous studies were published that showed that Trip8b was highly alternatively spliced and that the variants had different effects on trafficking HCN channels to the cell surface[7-9]. In addition, these groups showed that all of the variants studied were able to blunt the effect of cAMP on the channel. Gating of HCN channels is regulated by cAMP in a direct, protein kinase or phosphorylation, independent manner, but in the presence of Trip8b that regulation is greatly reduced.
In neurons, little is known about the diversity of expression and function of HCN channels. It is known that the trafficking and gating of the channel is different in neurons than in expression systems. HCN channels show a highly specified pattern of expression in neurons, for example, in CA1 pyramidal neurons HCN channels are expressed in a gradient of increasing density with increasing distance from the soma. Given its diversity of function in vivo, Trip8b is an attractive candidate for regulation of HCN channels in vivo. With that in mind, I plan to study the biophysics of the interaction of HCN2 channels and Trip8b. What residues are critical for the interaction for these two proteins? There is increasing evidence that there is a second interaction site in the cyclic nucleotide binding domain (CNBD)[7, 10]. Are both of these interactions important for the physiological role of Trip8b? What is the stoichiometry of that complex? How does the Trip8b/HCN interaction alter the cyclic nucleotide dependence of channel gating? I plan to address these questions using a combination of fluorescence and electrophysiology that will include patch clamp fluorometry, single molecule fluorescence, and targeted mutagenesis based on crystal structures. In addition to the information provided about Trip8b, I believe over the long term this study will help elucidate the important structures and rearrangements that occur during ¿normal¿ HCN channel gating and ligand binding. Also, these finding will be of general interest towards the understanding of gating and ligand binding movements for many different types of ion channel and receptors.
项目摘要
HCN通道在包括脑和心脏在内的许多组织中发挥关键的生理作用。这些通道负责心脏和神经元细胞中的起搏器活动、树突整合和设置静息膜电位[1]。HCN通道还涉及许多病理生理学病症,包括癫痫、周围神经性疼痛和帕金森病[2-5]。
2004年,Santora及其同事发现了HCN通道的辅助蛋白Trip 8b [6]。最近,同时发表了三项研究,表明Trip 8b是高度可变剪接的,并且变体对将HCN通道运输到细胞表面具有不同的影响[7-9]。此外,这些研究组表明,所有研究的变体都能够减弱cAMP对通道的影响。HCN通道的门控由cAMP以直接的、蛋白激酶或磷酸化独立的方式调节,但在Trip 8b存在下,该调节大大降低。
在神经元中,对HCN通道的表达和功能的多样性知之甚少。已知通道的运输和门控在神经元中与在表达系统中不同。HCN通道在神经元中显示出高度特异性的表达模式,例如,在CA 1锥体神经元中,HCN通道以随着与索马的距离增加而密度增加的梯度表达。鉴于其在体内的功能多样性,Trip 8b是体内HCN通道调节的有吸引力的候选者。考虑到这一点,我计划研究HCN 2通道和Trip 8b相互作用的生物物理学。哪些残基对这两种蛋白质的相互作用至关重要?越来越多的证据表明,在环核苷酸结合结构域(CNBD)中存在第二个相互作用位点[7,10]。这两种相互作用对Trip 8b的生理作用重要吗?这个络合物的化学计量是多少?Trip 8b/HCN相互作用如何改变通道门控的环核苷酸依赖性?我计划使用荧光和电生理学的结合来解决这些问题,其中包括膜片钳荧光测定法、单分子荧光和基于晶体结构的靶向诱变。除了提供有关Trip 8b的信息外,我相信从长远来看,这项研究将有助于阐明在正常HCN通道门控和配体结合期间发生的重要结构和重排。此外,这些发现将对许多不同类型的离子通道和受体的门控和配体结合运动的理解具有普遍意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Bankston其他文献
John Bankston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Bankston', 18)}}的其他基金
Function and regulation of acid-sensing ion channels in corneal neurons
角膜神经元酸敏离子通道的功能和调节
- 批准号:
9395287 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Function and regulation of acid-sensing ion channels in corneal neurons
角膜神经元酸敏离子通道的功能和调节
- 批准号:
8676511 - 财政年份:2014
- 资助金额:
$ 5.39万 - 项目类别:
Mechanisms of HCN regulation by accessory subunit Trip8b using fluorescence and e
利用荧光和 e 辅助亚基 Trip8b 调节 HCN 的机制
- 批准号:
8526582 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
Mechanisms of HCN regulation by accessory subunit Trip8b using fluorescence and e
利用荧光和 e 辅助亚基 Trip8b 调节 HCN 的机制
- 批准号:
8250122 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
相似海外基金
Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
- 批准号:
488788 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Operating Grants
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
- 批准号:
10717440 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
- 批准号:
10749474 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
- 批准号:
10673458 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
- 批准号:
2884151 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
- 批准号:
10660668 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
- 批准号:
2239056 - 财政年份:2023
- 资助金额:
$ 5.39万 - 项目类别:
Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
- 批准号:
468851650 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Research Grants