Protein-Ligand Binding Equilibrium and Mechanism under Macromolecular Crowding
大分子拥挤下蛋白质-配体结合平衡及机制
基本信息
- 批准号:8397711
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-13 至 2015-08-12
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityBindingBinding ProteinsBiologicalBiological ModelsCellsComplementCrowdingDiseaseEnvironmentEquilibriumExclusionExhibitsFicollFluorescenceFluorescence SpectroscopyFutureKnowledgeLigand BindingLigandsMinorModelingMolecular ConformationMonitorOne-Step dentin bonding systemOrganismPathway interactionsPeriplasmic Binding ProteinsPharmaceutical PreparationsPopulationProcessPropertyProtein ConformationProteinsRelative (related person)RelaxationRouteSamplingSignal PathwaySimulateSolutionsTechniquesTitrationsTranslatingTryptophanbasebiological systemscomputerized data processingdesignglutamine transport proteininsightmolecular recognitionpredictive modelingresponsesimulationsmall molecule
项目摘要
DESCRIPTION (provided by applicant): Molecular recognition is an essential process in biological systems, providing a means for external inputs, such as small molecule ligands, to be translated into cellular responses. Many drugs take advantage of this phenomenon by mimicking ligands and binding to target proteins. During the process of ligand binding, proteins often undergo conformational changes. The mechanism underpinning this transition can be considered as a combination of two major pathways, known as "induced fit" and "conformational sampling." Determining contribution from these routes can be difficult, as intermediate states along the pathways exist at populations that most techniques cannot detect. Additionally, it is not known how a crowded environment, such as the inside of a cell, will affect these intermediate states or the affinity of proteins for their ligands as a result. I will be using seveal techniques to investigate the contribution of conformational selection to ligand binding affinity fr two periplasmic binding proteins. I will quantify the populations of two distinct unbound protein states in both dilute and crowded conditions by paramagnetic relaxation enhancement. It is expected that the These results will be combined with a simulation-based approach, using a technique developed in our lab known as "postprocessing" to predict the expected shift in equilibrium between conformations as a result of crowding. Ligand titrations will be performed in similar conditions, monitored by intrinsic tryptophan fluorescence to assess binding affinities. These results will be complemented with simulations designed to generate a potential of mean force for the closing and opening process of periplasmic binding proteins in liganded and unliganded forms. The results of this simulation will be analyzed to determine the ratios of binding affinities of open and closed forms of the proteins, and will be repeated in dilute and crowded conditions to predict changes in overall affinity. This project will produce some of the first studies that connect directly observed conformational equilibria in the unbound state to ligand binding properties. Using crowding agents in solution will provide insight into differences between dilute solution studies and biological conditions, and strengthen our understanding of molecular recognition as it occurs in biological systems.
PUBLIC HEALTH RELEVANCE: Study of molecular recognition is essential to understanding how signaling processes function in living systems. Increased knowledge of ligand binding will result in additional insight when protein-ligand interactions do not function properly, often leading to unsuccessful signaling pathways that can cause disease states. Periplasmic binding proteins provide an excellent model system for investigating conformational changes and ligand binding in cell-like conditions, the results of which will create a more comprehensive picture of molecular recognition processes in living systems.
描述(由申请人提供):分子识别是生物系统中的一个重要过程,为将外部输入(如小分子配体)转化为细胞反应提供了一种手段。许多药物通过模拟配体并结合靶蛋白来利用这一现象。在与配体结合的过程中,蛋白质经常发生构象变化。支持这种转变的机制可以被认为是两个主要途径的组合,称为“诱导拟合”和“构象采样”。“确定这些途径的贡献可能很困难,因为大多数技术无法检测到这些途径的中间状态沿着存在于种群中。此外,目前还不知道拥挤的环境,如细胞内部,将如何影响这些中间状态或蛋白质对其配体的亲和力。我将使用分子生物学技术来研究构象选择对两种周质结合蛋白的配体结合亲和力的贡献。我将量化人口的两个不同的未结合的蛋白质状态在稀释和拥挤的条件下,顺磁弛豫增强。预计这些结果将与基于模拟的方法相结合,使用我们实验室开发的称为“后处理”的技术来预测拥挤导致的构象之间的预期平衡变化。将在类似条件下进行配体滴定,通过固有的色氨酸荧光进行监测,以评估结合亲和力。这些结果将补充模拟设计,以产生一个潜在的平均力的封闭和开放过程中的配体和unliganded形式的周质结合蛋白。将分析该模拟的结果以确定蛋白质的开放和封闭形式的结合亲和力的比率,并将在稀释和拥挤条件下重复以预测总体亲和力的变化。这个项目将产生一些第一个研究,直接观察到的构象平衡在未结合状态的配体结合特性。在溶液中使用拥挤剂将深入了解稀溶液研究和生物条件之间的差异,并加强我们对生物系统中分子识别的理解。
公共卫生相关性:分子识别的研究对于理解信号过程在生命系统中的功能至关重要。当蛋白质-配体相互作用不能正常发挥作用时,配体结合知识的增加将导致额外的洞察力,这通常会导致可能导致疾病状态的不成功的信号通路。周质结合蛋白为研究细胞样条件下的构象变化和配体结合提供了一个很好的模型系统,其结果将创建一个更全面的图像在生活系统中的分子识别过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Charles Miklos其他文献
Andrew Charles Miklos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Charles Miklos', 18)}}的其他基金
Protein-Ligand Binding Equilibrium and Mechanism under Macromolecular Crowding
大分子拥挤下蛋白质-配体结合平衡及机制
- 批准号:
8536145 - 财政年份:2012
- 资助金额:
$ 4.92万 - 项目类别:
相似海外基金
Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
- 批准号:
2887848 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
- 批准号:
MR/X013227/1 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
- 批准号:
573604-2022 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
- 批准号:
2610945 - 财政年份:2021
- 资助金额:
$ 4.92万 - 项目类别:
Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
- 批准号:
2138667 - 财政年份:2021
- 资助金额:
$ 4.92万 - 项目类别:
Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 4.92万 - 项目类别:
Studentship