The mechanism of selenium incorporation into selenocysteine in humans.
硒在人体中掺入硒代半胱氨酸的机制。
基本信息
- 批准号:8235377
- 负责人:
- 金额:$ 27.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementActive SitesAdverse effectsAmino AcidsBackBindingBiochemicalBiological ModelsCardiovascular systemCell modelCellsChargeChemicalsClinical TrialsComplexDegradation PathwayDietDisabled PersonsEndocrine System DiseasesEndocrine systemEnzymesEukaryotaEukaryotic CellEventFailureFoundationsFundingFutureGenesGoalsHealthHeart DiseasesHumanHuman ActivitiesHuman PathologyHydrogenIn VitroKineticsLaboratoriesLeadLinkMalignant NeoplasmsMetabolicMetabolismMethodsMicronutrientsMolecularMood DisordersMutationNervous system structurePathologyPhosphoserinePhosphotransferasesPhysiologicalProcessProteinsPyridoxal PhosphateReactionRecyclingRegulationResolutionRoleSchemeSeleniteSeleniumSelenium and Vitamin E Efficacy TrialSelenocysteineSeriesSerineSerine-tRNA LigaseSpecificityStagingStructureSulfidesSupplementationSystemTestingTimeTransfer RNAUnited States National Institutes of HealthWorkcancer preventioncancer typeclinically relevanthandicapping conditionmuscular systemnervous system disordernovelpreventselenium deficiencyselenocysteine-tRNAselenocysteinyl-tRNAselenoenzymeselenophosphateselenoproteinserine-tRNAsoundsynthetic enzyme
项目摘要
DESCRIPTION (provided by applicant): Selenium, the only genetically encoded dietary micronutrient, is essential for human health and survival. Selenium deficiency and mutations in selenoprotein genes lead to numerous pathologies and there is strong evidence that selenium is important in preventing various types of cancer. These effects are remarkable when one considers that selenium is found in only two dozens of human proteins. Although selenium exerts its physiological role as selenocysteine, only a handful of studies have been aimed at explaining how selenium is incorporated into its major metabolite and subsequently into selenoproteins. Also, while the sequence of events during this process has been well described by biochemical studies in prokaryotic model systems, very little is known about the same process in eukaryotes, in general, and in humans, in particular. Here, important and yet unexplored steps in the mechanism of selenium incorporation into selenocysteine will be studied on the human system. In particular, the mechanisms of the first and terminal synthetic reactions will be determined at the structural level. A series of binary and ternary complexes that represent distinct stages in selenocysteine formation will be studied by biophysical and biochemical methods. Selenocysteine is unique amongst amino acids not only because it contains an essential micronutrient, but also because it is formed on its tRNA. In other words, while all other amino acids are formed independent of their tRNAs, selenocysteine is synthesized from an amino-acid precursor (serine) in a series of reactions that require highly specific enzymes and selenocysteine tRNA. In the first reaction, seryl-tRNA synthetase (SerRS) 'erroneously' pairs serine with selenocysteine tRNA, whereas in the second step, selenocysteine-tRNA kinase (kinase) phosphorylates the seryl group. In the terminal reaction, selenocysteine-tRNA synthase (synthase) promotes the conversion of phosphoserine into selenocysteine in a reaction that requires selenophosphate. Selenophosphate, in turn, is the main selenium donor in humans that links the synthetic and degradation pathways of selenocysteine. Selenium that is either ingested with fod or extracted from degraded selenoproteins is converted first into selenide and then into selenophosphate by a selenoenzyme selenophosphate synthase 2 (SPS2). Thus, SerRS activity may regulate the amount of the initial reaction substrate, whereas both synthase and SPS2 may regulate how efficiently selenium is inserted into the amino acid selenocysteine. Despite the obvious importance for selenium metabolism, in general, and selenocysteine synthesis, in particular, very little is known about how human SerRS, SPS2 and synthase catalyze respective reactions, how they select their reaction substrates and how their activities are regulated. Here, these mechanisms wil be determined at the structural level. The proposed study wil serve as a foundation for future studies in whole cell model systems in which the regulation of the synthesis of the clinically relevant selenoproteins will be studied and the potential for novel therapies established.
PUBLIC HEALTH RELEVANCE: The proposed study will explain how humans incorporate selenium into the amino acid selenocysteine, which is an indispensible component of selenoproteins and selenoenzymes that are essential for survival. Our findings will facilitate studies in human cells pertaining to regulation of the synthesis of clinically relevant selenoproteins, which will establish the potential for novel therapies of a number of human pathologies including cancer, mood and neurological disorders, and diseases of endocrine, cardiovascular and muscular systems.
描述(由申请人提供):硒是唯一一种基因编码的膳食微量营养素,对人类健康和生存至关重要。硒缺乏和硒蛋白基因突变导致多种病理,有强有力的证据表明硒在预防各种类型的癌症方面很重要。考虑到硒只存在于二十多种人体蛋白质中,这些效果就显得非常显著了。尽管硒发挥其作为硒半胱氨酸的生理作用,但只有少数研究旨在解释硒如何被纳入其主要代谢物并随后进入硒蛋白。此外,虽然原核生物模型系统中的生化研究已经很好地描述了这一过程中的事件顺序,但对真核生物,特别是人类的相同过程知之甚少。在这里,重要的和尚未探索的步骤硒纳入硒半胱氨酸的机制将在人体系统研究。特别是,第一和末端合成反应的机理将在结构水平上确定。一系列代表硒代半胱氨酸形成不同阶段的二元和三元配合物将通过生物物理和生化方法进行研究。硒代半胱氨酸在氨基酸中是独一无二的,不仅因为它含有一种必需的微量营养素,还因为它是在其tRNA上形成的。换句话说,虽然所有其他氨基酸的形成都独立于它们的tRNA,但硒代半胱氨酸是由氨基酸前体(丝氨酸)通过一系列反应合成的,这些反应需要高度特异性的酶和硒代半胱氨酸tRNA。在第一个反应中,丝氨酸-tRNA合成酶(SerRS)错误地将丝氨酸与硒代半胱氨酸tRNA配对,而在第二步中,硒代半胱氨酸-tRNA激酶(激酶)使丝氨酸磷酸化。在末端反应中,硒代半胱氨酸- trna合成酶(合酶)在需要硒代磷酸盐的反应中促进磷酸丝氨酸转化为硒代半胱氨酸。而磷酸硒则是人体内主要的硒供体,连接着硒半胱氨酸的合成和降解途径。从食物中摄取的硒或从降解的硒蛋白中提取的硒首先通过硒酶硒磷酸合成酶2 (SPS2)转化为硒化物,然后转化为硒磷酸。因此,SerRS活性可能调节初始反应底物的数量,而合成酶和SPS2可能调节硒插入硒半胱氨酸的效率。尽管对硒代谢,特别是硒代半胱氨酸合成具有明显的重要性,但对于人类SerRS、SPS2和合成酶如何催化各自的反应,它们如何选择反应底物以及它们的活性如何被调节,我们知之甚少。在这里,这些机制将在结构层面确定。该研究将为未来全细胞模型系统的研究奠定基础,在全细胞模型系统中,将研究临床相关硒蛋白合成的调控,并建立新疗法的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miljan Simonovic其他文献
Miljan Simonovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miljan Simonovic', 18)}}的其他基金
The mechanism of selenium incorporation into selenocysteine in humans.
硒在人体中掺入硒代半胱氨酸的机制。
- 批准号:
8653969 - 财政年份:2012
- 资助金额:
$ 27.95万 - 项目类别:
The mechanism of selenium incorporation into selenocysteine in humans.
硒在人体中掺入硒代半胱氨酸的机制。
- 批准号:
9060354 - 财政年份:2012
- 资助金额:
$ 27.95万 - 项目类别:
The mechanism of selenium incorporation into selenocysteine in humans.
硒在人体中掺入硒代半胱氨酸的机制。
- 批准号:
8849923 - 财政年份:2012
- 资助金额:
$ 27.95万 - 项目类别:
The mechanism of selenium incorporation into selenocysteine in humans.
硒在人体中掺入硒代半胱氨酸的机制。
- 批准号:
8442278 - 财政年份:2012
- 资助金额:
$ 27.95万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Discovery Grants Program - Individual