Analyzing inoculum effect and optimal design of antibiotic treatment

接种效果分析及抗生素治疗优化设计

基本信息

  • 批准号:
    8332291
  • 负责人:
  • 金额:
    $ 28.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Antibiotics have been hailed as the single most significant therapeutic discovery in medicine. However, they have become increasingly ineffective due to emergence of antibiotic resistant bacteria. In addition to developing new antibiotics, there is a critical need to design better treatment protocols using existing antibiotics. Achieving this goal will require a better understanding of the myriad of ways by which bacteria can resist or tolerate antibiotic treatment at the level of individuals or populations. A common phenomenon of bacterial tolerance is the inoculum effect: for a given concentration of an antibiotic, its ability to inhibit bacterial growth decreases with the size of the bacterial inoculum. Its occurrence is often considered undesirable in the clinical setting: it can increase mortality rates of infected host due to insufficient dose of antibiotics and cause overestimation of bacterial resistance. However, the underlying mechanism by which the inoculum effect occurs remains poorly understood. For an antibiotic targeting the protein synthesis machinery (the ribosome), our preliminary analysis suggests that: (1) a critical determinant of inoculum effect is fast degradation of the ribosomal components induced by the antibiotic via the heat shock response; (2) the inoculum effect can drastically affect efficacy of antibiotic treatment. Our proposed research aims to examine these hypotheses by using a translational approach that integrates mathematical modeling, in vitro study, and in vivo study in the animal model of bacterial infections. It is our vision that the proposed work will generate mechanistic understanding of inoculum effect and lead to design of effective treatment strategies against pathogens that exhibit inoculum effect. These outcomes would represent a significant step toward more effective use of existing antibiotics to treat bacterial infections.
描述(由申请者提供):抗生素被誉为医学界最重要的治疗发现。然而,由于出现了抗药性细菌,它们变得越来越无效。除了开发新的抗生素外,迫切需要利用现有的抗生素设计更好的治疗方案。要实现这一目标,需要更好地了解细菌在个人或群体层面上抵抗或耐受抗生素治疗的各种方式。细菌耐受性的一个常见现象是接种效应:对于给定浓度的抗生素,其抑制细菌生长的能力随着细菌接种量的增加而降低。它的发生在临床上通常被认为是不可取的:它会由于抗生素剂量不足而增加受感染宿主的死亡率,并导致对细菌耐药性的高估。然而,接种效应发生的潜在机制仍然知之甚少。对于针对蛋白质合成机制(核糖体)的抗生素,我们的初步分析表明:(1)接种效应的关键决定因素是抗生素通过热休克反应诱导的核糖体成分的快速降解;(2)接种效应可以极大地影响抗生素治疗的效果。我们提出的研究旨在通过一种结合了数学建模、体外研究和体内研究的转换方法来检验这些假设。我们的愿景是,拟议的工作将产生对接种效应的机械理解,并导致针对表现出接种效应的病原体设计有效的治疗策略。这些结果将代表着朝着更有效地使用现有抗生素治疗细菌感染迈出了重要的一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LINGCHONG YOU其他文献

LINGCHONG YOU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LINGCHONG YOU', 18)}}的其他基金

Targeted control of self-transmissible plasmids by using engineered interfering plasmids
使用工程干扰质粒靶向控制自传播质粒
  • 批准号:
    10434929
  • 财政年份:
    2021
  • 资助金额:
    $ 28.67万
  • 项目类别:
Targeted control of self-transmissible plasmids by using engineered interfering plasmids
使用工程干扰质粒靶向控制自传播质粒
  • 批准号:
    10277518
  • 财政年份:
    2021
  • 资助金额:
    $ 28.67万
  • 项目类别:
Targeted control of self-transmissible plasmids by using engineered interfering plasmids
使用工程干扰质粒靶向控制自传播质粒
  • 批准号:
    10671458
  • 财政年份:
    2021
  • 资助金额:
    $ 28.67万
  • 项目类别:
Tradeoffs between fitness costs and transfer rates in horizontal gene transfer
水平基因转移中适应度成本和转移率之间的权衡
  • 批准号:
    10585969
  • 财政年份:
    2017
  • 资助金额:
    $ 28.67万
  • 项目类别:
Dynamics of horizontal gene transfer in response to antibiotic treatment
抗生素治疗反应中水平基因转移的动态
  • 批准号:
    9310629
  • 财政年份:
    2017
  • 资助金额:
    $ 28.67万
  • 项目类别:
Temporal E2F Dynamics and Cell-Fate Decisions in Single Mammalian Cells
单个哺乳动物细胞中的时间 E2F 动力学和细胞命运决策
  • 批准号:
    8631365
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:
Temporal E2F Dynamics and Cell-Fate Decisions in Single Mammalian Cells
单个哺乳动物细胞中的时间 E2F 动力学和细胞命运决策
  • 批准号:
    9281550
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:
A synthetic biology approach to analyze evolution of programmed bacterial death
分析程序性细菌死亡进化的合成生物学方法
  • 批准号:
    8673991
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:
A synthetic biology approach to analyze evolution of programmed bacterial death
分析程序性细菌死亡进化的合成生物学方法
  • 批准号:
    8828720
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:
A synthetic biology approach to analyze evolution of programmed bacterial death
分析程序性细菌死亡进化的合成生物学方法
  • 批准号:
    9274315
  • 财政年份:
    2014
  • 资助金额:
    $ 28.67万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 28.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了