Gating Mechanisms of Retinal Rod cGMP Activated Channels
视网膜杆 cGMP 激活通道的门控机制
基本信息
- 批准号:8265002
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-01-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AnosmiaBehaviorBehavior ControlBindingBlindnessBoxingBrainCalmodulinCationsCell Membrane ProteinsCellsCellular MembraneCoupledCouplesCyclic AMPCyclic GMPCyclic NucleotidesDNA Sequence RearrangementDevelopmentFluorescenceFluorometryFundingGated Ion ChannelGoalsGrantHealthIon ChannelIonsLabelLigand BindingLigandsLightLipidsMeasurementMeasuresMembraneMetalsMethodsMolecularMolecular MachinesMotionMutationPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhotoreceptorsProcessProteinsRelative (related person)ResolutionRoleSecond Messenger SystemsSensory DisordersSignal TransductionSmell PerceptionSolutionsSubcellular structureTaste PerceptionTestingThinkingTimeTransistorsVertebrate PhotoreceptorsVisionVisual PerceptionWorkcyclic-nucleotide gated ion channelsmethod developmentmolecular dynamicsmolecular rearrangementnervous system disordernovelnovel strategiesolfactory receptorpatch clampprotein functionresearch studyresponseretinal rodssecond messenger
项目摘要
DESCRIPTION (provided by applicant): Ion channels are exquisite molecular machines. By opening and closing an ion selective pore across the cell membrane, these proteins ultimately control everything from our senses to our thoughts. Our long term goal is to understand the precise molecular motions that underlie this gating behavior of ion channels. Cyclic nucleotide-gated (CNG) channels produce the primary electrical signal in our photoreceptors in response to light. They are nonselective cation channels that are opened by the direct binding of cyclic nucleotides (cAMP and cGMP) to the channel and modulated by various second messengers. In addition to their role in vision, they are also essential for olfaction and taste, and mutations in these channels cause an assortment of sensory disorders ranging from blindness to anosmia. Their dynamic behavior controls our visual perception, yet the molecular mechanism for their function is largely unknown. This void is due, in part, to a lack of experimental approaches that allow us to "watch" proteins in action in real time at atomic resolution. We aim to fill this void by developing novel fluorescence approaches and applying them to investigate the mechanisms of activation and modulation of CNG channels. We will take advantage of two exciting new developments: 1) our solution of the x-ray crystal structures of the intracellular ligand binding and gating domains of the closely related HCN2 and SpIH channels, and 2) our development of methods for simultaneous current and fluorescence measurements from cell-free membrane patches (termed patch-clamp fluorometry, PCF). Our specific aims are to precisely determine the molecular rearrangement in two important parts of the channel, the cyclic nucleotide- binding domain, and the C-linker, the region that couples binding of cyclic nucleotides to opening of the pore. At the conclusion of these experiments we will know a great deal more about how CNG and related channels work, and will have fully developed new approaches to studying molecular rearrangements applicable to other channels and other proteins. PUBLIC HEALTH RELEVANCE: Ion channels are the transistors of the brain and thereby control everything from our senses to our thoughts. Cyclic nucleotide-gated (CNG) channels produce the primary electrical signal in our rods and cones in response to light, and mutations in these channels cause an assortment of sensory disorders ranging from blindness to anosmia. Our long term goal is to understand how these important proteins work at the molecular level to uncover basic mechanisms of protein function and enable us to develop targeted therapies for neurological diseases.
描述(由申请人提供):离子通道是精美的分子机。通过打开和关闭整个细胞膜的离子选择性孔,这些蛋白质最终可以控制从我们的感官到思想的一切。我们的长期目标是了解离子通道这种门控行为的确切分子运动。循环核苷酸门控(CNG)通道响应光照响应光,在我们的光感受器中产生主要的电信号。它们是非选择性阳离子通道,通过环状核苷酸(CAMP和CGMP)与通道的直接结合开放,并由各种第二使者调节。除了它们在视觉中的作用外,它们对于嗅觉和口味也是必不可少的,这些渠道中的突变会导致各种感觉障碍,从失明到厌食。他们的动态行为控制着我们的视觉感知,但是其功能的分子机制在很大程度上尚不清楚。该空白部分是由于缺乏实验方法,使我们可以在原子分辨率下实时“观察”蛋白质。我们的目的是通过开发新型的荧光方法来填补这一空隙,并应用它们来研究CNG通道的激活和调节机制。我们将利用两个令人兴奋的新事态发展:1)我们对密切相关的HCN2和SPIH渠道的细胞内配体结合和门控域的X射线晶体结构的解决方案,以及2)我们开发的方法开发了我们的同时电流和荧光测量方法的开发,该方法是无需用培养基贴片贴片贴片贴片(称为贴片斑块荧光纤维纤维计量)。我们的具体目的是精确确定通道两个重要部分的分子重排,环状核苷酸结合结构域和c-linker,c-linker是伴侣结合环核苷酸与孔隙打开的区域。在这些实验的结论中,我们将了解有关CNG和相关渠道如何工作的更多信息,并将为研究适用于其他通道和其他蛋白质的分子重排的新方法。公共卫生相关性:离子渠道是大脑的晶体管,因此控制了从我们的感官到思想的一切。循环核苷酸门控(CNG)通道响应光照响应光,在我们的棒和锥中产生主要的电信号,这些通道中的突变会导致各种感觉障碍,从失明到厌食。我们的长期目标是了解这些重要的蛋白质如何在分子水平上起作用,以发现蛋白质功能的基本机制,并使我们能够开发针对神经系统疾病的靶向疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William N Zagotta其他文献
William N Zagotta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William N Zagotta', 18)}}的其他基金
Structural energetics of voltage- and ligand-dependent gating in ion channels
离子通道中电压和配体依赖性门控的结构能量学
- 批准号:
10549486 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Functional and structural dynamics of KCNH4 and KCNH8
KCNH4 和 KCNH8 的功能和结构动力学
- 批准号:
10445688 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Structural mechanisms for gating of bacterial cyclic nucleotide-gated ion channels
细菌环核苷酸门控离子通道门控的结构机制
- 批准号:
10224689 - 财政年份:2018
- 资助金额:
$ 33.36万 - 项目类别:
Molecular mechanisms for regulation of HCN channels by TRIP8b subunits
TRIP8b 亚基调节 HCN 通道的分子机制
- 批准号:
8279160 - 财政年份:2011
- 资助金额:
$ 33.36万 - 项目类别:
Molecular mechanisms for regulation of HCN channels by TRIP8b subunits
TRIP8b 亚基调节 HCN 通道的分子机制
- 批准号:
8092046 - 财政年份:2011
- 资助金额:
$ 33.36万 - 项目类别:
GATING MECHANISMS OF RETINAL ROD CGMP ACTIVATED CHANNELS
视网膜杆 CGMP 激活通道的门控机制
- 批准号:
6489805 - 财政年份:1994
- 资助金额:
$ 33.36万 - 项目类别:
GATING MECHANISMS OF RETINAL ROD CGMP-ACTIVATED CHANNELS
视网膜杆 CGMP 激活通道的门控机制
- 批准号:
2164130 - 财政年份:1994
- 资助金额:
$ 33.36万 - 项目类别:
GATING MECHANISMS OF RETINAL ROD cGMP ACTIVATED CHANNELS
视网膜杆 cGMP 激活通道的门控机制
- 批准号:
7004525 - 财政年份:1994
- 资助金额:
$ 33.36万 - 项目类别:
Gating Mechanisms of Retinal Cyclic Nucleotide-Regulated Ion Channels
视网膜环状核苷酸调节离子通道的门控机制
- 批准号:
10372190 - 财政年份:1994
- 资助金额:
$ 33.36万 - 项目类别:
相似国自然基金
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
深部岩石原位保压取心控制器力学行为规律研究
- 批准号:52304146
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分支理论的高速公路交通突变行为分析及控制方法研究
- 批准号:72361031
- 批准年份:2023
- 资助金额:26 万元
- 项目类别:地区科学基金项目
嵌合抗原受体巨噬细胞(CAR-M)微马达的制备及其血管蜂窝网络磁驱行为机理与控制方法研究
- 批准号:52375565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高维快—慢系统的滞后混沌行为及其机理研究
- 批准号:12302026
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Cytokine-mediated neurologic disease in COVID-19
COVID-19 中细胞因子介导的神经系统疾病
- 批准号:
10509125 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Elucidating Olfactory Epithelial Anti-Viral Responses in Persistent Post-Viral Olfactory Dysfunction
阐明持续性病毒后嗅觉功能障碍中嗅觉上皮的抗病毒反应
- 批准号:
10557195 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Cytokine-mediated neurologic disease in COVID-19
COVID-19 中细胞因子介导的神经系统疾病
- 批准号:
10704594 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Role of PROKR2 Neurons of the Amygdala in Reproductive Function
杏仁核 PROKR2 神经元在生殖功能中的作用
- 批准号:
10190983 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别:
Role of PROKR2 Neurons of the Amygdala in Reproductive Function
杏仁核 PROKR2 神经元在生殖功能中的作用
- 批准号:
9759333 - 财政年份:2019
- 资助金额:
$ 33.36万 - 项目类别: