NeoProteoglycans as synthetic materials for regenerative medicine and bioimaging

新蛋白聚糖作为再生医学和生物成像的合成材料

基本信息

  • 批准号:
    8286932
  • 负责人:
  • 金额:
    $ 8.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): My career goal is to lead an interdisciplinary research program at a major US university, which will combine components of nanomaterials, tissue engineering, and bioimaging research to create new therapeutic and diagnostic tools. This K99/R00 application has two components that will help me achieve my goal: 1) At the research level, it outlines a strategy for the development of functional nanoscale mimetics of proteoglycans, a class of cellular function regulators, and their integration into a microarray discovery platform to generate materials for biomedical use. 2) The training portion of this application describes the steps I will take to acquire the necessary skills in molecular and cell biology, nanoimaging, and professional and career development I will need to build such an interdisciplinary research program and launch a successful career as an independent scientist and scholar. The R00 award will provide an important start-up support for my team, while we establish the research projects outlined in this application. The preliminary data we will generate with the help of this award will be vital as we seek future research support. Background: My academic and research experience makes me well positioned to develop the cross- disciplinary research program outlined in this application. My graduate research focused on the development of new chemical reactions and the application of these transformations in the construction of complex organic molecules. As a postdoctoral fellow, I have used my synthetic skills to create a new class of nanoscale mimetics of cell-surface glycoproteins for microarray applications. During this work, I became familiar with carbohydrate and polymer synthesis, microarray fabrication, and a number of methods for surface and soft nanomaterials characterization. In addition, I have helped establish and run a synthetic laboratory at the Molecular Foundry, gaining an invaluable experience for the future, when I start my own research laboratory. Research: The attached research proposal outlines the design of nanoscale surrogates of proteoglycans (which I term "neoPGs") and their use as cellular function modulators in tissue engineering scaffolds, as imaging agents for early cancer detection, and as novel macromolecular templates for nanocrystal growth and nanocomposites assembly. Proteoglycans perform all these functions in living organisms; however, harnessing their unique capabilities for medical purposes has so far proved challenging. Their structural complexity, compositional and functional heterogeneity, and non-template biosynthesis limits their applicability in biomedical research. My proposal outlines a simple synthetic strategy that translates the basic architectural features responsible for proteoglycans' biological function into nanoscale polymeric neoPGs. Taking advantage of the technological power of microarrays, and my skills in building them, my team will construct a "neoPG chip", to rapidly interrogate a library of neoPG structures for their ability to exert desirable biological properties. In three specific projects, we will demonstrate neoPGs' broad utility and their potential for biomedical research. Training: The K99 training component of this award will be critical during my transition to the independent phase of my academic career. The biomedical focus of the research I intend to pursue necessitates that I become proficient in the topics and techniques of molecular and cell biology. The proposed training under the mentorship of Prof. Bertozzi will help me attain these skills. The nanoimaging techniques I will acquire through collaboration with Dr. James De Yoreo at the Molecular Foundry will enable my research team to design materials that match the dimensions of biological building blocks and explore new ways to engineer biological interfaces. The numerous professional and career development resources available through LBNL and UC Berkeley and my stellar mentoring committee assembled from experts in molecular biology, biomaterials, nanoscience, and tissue engineering will be an invaluable asset, while I seek a faculty position in the US and as I launch my own independent career. Environment: As a member of the Bertozzi lab, I will have access to the state-of-the-art facilities at the Molecular Foundry and the resources and instrumentation of UC Berkeley's College of Chemistry. The scientific excellence and diversity of the Bertozzi research team, its well-established record of high-impact contributions to the fields of chemical and molecular biology, and the highly collaborative atmosphere Prof. Bertozzi fosters in her group will facilitate my rapid progress in molecular and cell biology training. Collaboration with Dr. James DeYoreo at the Molecular Foundry and the expertise of the Foundry's scientific staff will provide an important support, as I undertake my training in nanomaterials imaging and characterization. Finally, UC Berkeley's renowned academic and scientific community provides a vibrant environment, in which to exchange ideas, forge collaborations, and explore new frontiers in science and will undoubtedly contribute to my professional growth.
描述(由申请人提供):我的职业目标是在美国一所主要大学领导一个跨学科研究项目,该项目将结合纳米材料、组织工程和生物成像研究的组成部分,创造新的治疗和诊断工具。这个K99/R00应用程序有两个组成部分,将帮助我实现我的目标:1)在研究层面,它概述了开发蛋白质多糖(一类细胞功能调节剂)的功能纳米级模拟物的策略,并将其集成到微阵列发现平台中,以生成用于生物医学用途的材料。2)本申请的培训部分描述了我将采取的步骤,以获得分子和细胞生物学、纳米成像以及专业和职业发展方面的必要技能,我将需要建立这样一个跨学科的研究项目,并作为一名独立的科学家和学者开始成功的职业生涯。R00奖将为我的团队提供重要的启动支持,同时我们将建立本申请中概述的研究项目。我们将在这个奖项的帮助下生成的初步数据对于我们寻求未来的研究支持至关重要。背景:我的学术和研究经历使我能够很好地开展本申请中概述的跨学科研究计划。我的研究生研究重点是新的化学反应的发展以及这些转化在复杂有机分子构建中的应用。作为一名博士后,我利用我的合成技能为微阵列应用创造了一类新的纳米级细胞表面糖蛋白模拟物。在这份工作中,我熟悉了碳水化合物和聚合物的合成,微阵列的制造,以及一些表面和软纳米材料表征的方法。此外,我还帮助在分子铸造厂建立和运营了一个合成实验室,为未来我建立自己的研究实验室积累了宝贵的经验。研究:所附的研究计划概述了纳米级蛋白多糖替代物(我称之为“neoPGs”)的设计,以及它们在组织工程支架中的细胞功能调节剂、早期癌症检测的显像剂、纳米晶体生长和纳米复合材料组装的新型大分子模板。蛋白聚糖在生物体中执行所有这些功能;然而,到目前为止,利用它们独特的能力用于医疗目的是具有挑战性的。它们的结构复杂性、组成和功能异质性以及非模板生物合成限制了它们在生物医学研究中的适用性。我的提案概述了一种简单的合成策略,将负责蛋白聚糖生物功能的基本结构特征转化为纳米级聚合物neoPGs。利用微阵列的技术力量,以及我在构建它们方面的技能,我的团队将构建一个“neoPG芯片”,以快速查询neoPG结构库,以了解它们发挥理想生物特性的能力。在三个具体项目中,我们将展示neoPGs的广泛用途及其在生物医学研究中的潜力。培训:该奖项的K99培训部分将在我向学术生涯的独立阶段过渡期间至关重要。我打算从事的生物医学研究重点要求我精通分子和细胞生物学的主题和技术。在Bertozzi教授的指导下进行的培训将帮助我获得这些技能。通过与分子铸造厂的James De Yoreo博士合作,我将获得纳米成像技术,这将使我的研究团队能够设计出与生物构建块尺寸匹配的材料,并探索设计生物界面的新方法。LBNL和加州大学伯克利分校提供的众多专业和职业发展资源,以及我由分子生物学、生物材料、纳米科学和组织工程专家组成的一流指导委员会,将是我在美国寻求教职和开始自己独立职业生涯时的宝贵财富。环境:作为Bertozzi实验室的一员,我将有机会使用分子铸造厂最先进的设备和加州大学伯克利分校化学学院的资源和仪器。Bertozzi研究团队的科学卓越性和多样性,其在化学和分子生物学领域的高影响力贡献的良好记录,以及Bertozzi教授在她的团队中培养的高度协作氛围,将促进我在分子和细胞生物学培训方面的快速进步。与分子铸造厂的James DeYoreo博士的合作以及铸造厂科学人员的专业知识将为我在纳米材料成像和表征方面的培训提供重要支持。最后,加州大学伯克利分校著名的学术和科学社区提供了一个充满活力的环境,在这里可以交流思想,建立合作,探索科学的新领域,这无疑将有助于我的专业成长。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells.
用蛋白聚糖模仿糖蛋白重塑促进胚胎干细胞中的神经规范。
  • DOI:
    10.1021/ja505012a
  • 发表时间:
    2014-07-30
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Huang, Mia L.;Smith, Raymond A. A.;Trieger, Greg W.;Godula, Kamil
  • 通讯作者:
    Godula, Kamil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamil Godula其他文献

Kamil Godula的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamil Godula', 18)}}的其他基金

Cell membrane-targeting proteoglycan chimeras as selective growth factor signaling actuators
作为选择性生长因子信号传导执行器的细胞膜靶向蛋白聚糖嵌合体
  • 批准号:
    10588085
  • 财政年份:
    2023
  • 资助金额:
    $ 8.23万
  • 项目类别:
Glycan engineering via exoplasmic Golgi shuttle of glycosylation building blocks and modulators
通过糖基化构件和调节剂的外质高尔基体穿梭进行聚糖工程
  • 批准号:
    9809104
  • 财政年份:
    2019
  • 资助金额:
    $ 8.23万
  • 项目类别:
In vivo glycan engineering at the cell-matrix interface to control stem cell fate
细胞-基质界面的体内聚糖工程控制干细胞命运
  • 批准号:
    8955575
  • 财政年份:
    2015
  • 资助金额:
    $ 8.23万
  • 项目类别:
NeoProteoglycans as synthetic materials for regenerative medicine and bioimaging
新蛋白聚糖作为再生医学和生物成像的合成材料
  • 批准号:
    8719535
  • 财政年份:
    2013
  • 资助金额:
    $ 8.23万
  • 项目类别:
NeoProteoglycans as synthetic materials for regenerative medicine and bioimaging
新蛋白聚糖作为再生医学和生物成像的合成材料
  • 批准号:
    8728007
  • 财政年份:
    2013
  • 资助金额:
    $ 8.23万
  • 项目类别:
NeoProteoglycans as synthetic materials for regenerative medicine and bioimaging
新蛋白聚糖作为再生医学和生物成像的合成材料
  • 批准号:
    8916112
  • 财政年份:
    2013
  • 资助金额:
    $ 8.23万
  • 项目类别:
NeoProteoglycans as synthetic materials for regenerative medicine and bioimaging
新蛋白聚糖作为再生医学和生物成像的合成材料
  • 批准号:
    8091489
  • 财政年份:
    2011
  • 资助金额:
    $ 8.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了