Engineering Microbial Rhodopsins as Optical Voltage Sensors

将微生物视紫红质工程化为光学电压传感器

基本信息

  • 批准号:
    8204780
  • 负责人:
  • 金额:
    $ 37.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-12-15 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Engineering Microbial Rhodopsins as Optical Voltage Sensors Neuroscientists have long dreamed of a genetically encoded sensor that gives an optical signal in response to a change in membrane potential, with the goal of imaging electrical activity of neurons in vivo. Such a molecule could also be used to probe membrane potentials in mitochondria, cardiac cells, bacteria, or in other non-neuronal cells, and thus would provide a new window into the physiological states of a wide range of cells implicated in human health and disease. We propose to engineer a fluorescent transmembrane protein whose fluorescence is sensitive to membrane potential. The goal is to visualize a single action potential in vivo. Many groups have sought to attain this goal; our approach is entirely different from previous efforts. Our starting material is a microbial rhodopsin protein called green proteorhodopsin (GPR). In the wild, this protein absorbs sunlight and pumps protons to generate a proton motive force. We will engineer the protein to run backward-to use membrane voltage to modulate light. The retinal chromophore in wild-type microbial rhodopsins is sufficiently fluorescent for single-cell imaging. GPR can be expressed and imaged in zebra fish neurons in vitro and in living zebra fish. A single-point mutation to GPR leads to a protein whose fluorescence is exquisitely sensitive to membrane potential. The essence of the idea is to use membrane potential to pull a proton toward or away from a color- determining functional group in the protein. When the cell is at rest, this functional group is deprotonated and the protein is dark. When the cell fires an action potential, a proton is forced onto this functional group and the protein becomes bright. Just as GFP revolutionized biology through its ability to track the positions of proteins in cells, we believe that microbial rhodopsins will have a broad impact through their ability to label biological membranes, and to transduce membrane potential into changes in fluorescence. PUBLIC HEALTH RELEVANCE: Many cell membranes maintain a voltage difference across the membrane, which is used for communication (in neurons), and for generation of energy (in bacteria and mitochondria). Our goal is to develop a protein that when expressed in a cell gives a visible readout of the membrane potential. This protein will facilitate studies on the electrophysiology of a wide range of cells implicated in human health and disease.
描述(申请人提供):将微生物视紫红素工程作为光学电压传感器神经科学家长期以来一直梦想着一种基因编码的传感器,它可以根据膜电位的变化给出光学信号,目标是对活体神经细胞的电活动进行成像。这种分子还可以用来探测线粒体、心肌细胞、细菌或其他非神经细胞的膜电位,从而为了解与人类健康和疾病有关的广泛细胞的生理状态提供了一个新的窗口。我们建议设计一种荧光跨膜蛋白,其荧光对膜电位敏感。其目标是在活体内可视化单个动作电位。许多团体都试图实现这一目标;我们的做法与以往的努力完全不同。我们的起始材料是一种名为绿色蛋白紫质(GPR)的微生物视紫红质蛋白。在野外,这种蛋白质吸收阳光并泵出质子来产生质子动力。我们将使蛋白质反向运转--使用膜电压来调制光。野生型微生物视紫红质中的视网膜发色团具有足够的荧光,可用于单细胞成像。GPR可在体外培养的斑马鱼神经元和活的斑马鱼神经元中表达和成像。GPR的单点突变导致了一种蛋白质,其荧光对膜电位非常敏感。这个想法的本质是利用膜电位将质子拉向或远离蛋白质中决定颜色的官能团。当细胞处于静止状态时,这个功能基团去质子化,蛋白质变暗。当细胞激发一个动作电位时,一个质子被施加到这个功能基团上,蛋白质变得明亮。就像GFP通过追踪蛋白质在细胞中的位置而彻底改变了生物学一样,我们相信微生物视紫红素将通过它们标记生物膜的能力以及将膜电位转化为荧光变化的能力产生广泛的影响。 与公共卫生相关:许多细胞膜在膜上保持电压差,用于(神经元)的通讯和(细菌和线粒体)能量的产生。我们的目标是开发一种蛋白质,当在细胞中表达时,它可以提供可见的膜电位读数。这种蛋白质将促进对与人类健康和疾病有关的广泛细胞的电生理学的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Ezra Cohen其他文献

Adam Ezra Cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Ezra Cohen', 18)}}的其他基金

Protein ticker-tapes for brain-wide neural recordings
用于全脑神经记录的蛋白质自动收报机磁带
  • 批准号:
    10598626
  • 财政年份:
    2022
  • 资助金额:
    $ 37.12万
  • 项目类别:
Protein ticker-tapes for brain-wide neural recordings
用于全脑神经记录的蛋白质自动收报机磁带
  • 批准号:
    10399721
  • 财政年份:
    2022
  • 资助金额:
    $ 37.12万
  • 项目类别:
Two-photon all-optical electrophysiology in behaving mice
行为小鼠的双光子全光电生理学
  • 批准号:
    10401180
  • 财政年份:
    2022
  • 资助金额:
    $ 37.12万
  • 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
  • 批准号:
    8588923
  • 财政年份:
    2010
  • 资助金额:
    $ 37.12万
  • 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
  • 批准号:
    8401906
  • 财政年份:
    2010
  • 资助金额:
    $ 37.12万
  • 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
  • 批准号:
    8016421
  • 财政年份:
    2010
  • 资助金额:
    $ 37.12万
  • 项目类别:
Optical sensing of voltage, pH, and small molecules using microbial rhodopsins
使用微生物视紫红质对电压、pH 和小分子进行光学传感
  • 批准号:
    7981713
  • 财政年份:
    2010
  • 资助金额:
    $ 37.12万
  • 项目类别:

相似海外基金

An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
  • 批准号:
    23K21316
  • 财政年份:
    2024
  • 资助金额:
    $ 37.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
  • 批准号:
    10815443
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
  • 批准号:
    10896844
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
  • 批准号:
    23KJ1485
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
  • 批准号:
    2891744
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
    Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
  • 批准号:
    2247939
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
    Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
  • 批准号:
    10661457
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
  • 批准号:
    10901005
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
  • 批准号:
    22KF0399
  • 财政年份:
    2023
  • 资助金额:
    $ 37.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了