Hydrodynamic forces modulate renal tubular function
水动力调节肾小管功能
基本信息
- 批准号:7931615
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAdultAffectAgeApicalBackBloodBlood PressureCellsCiliaCongestive Heart FailureCoronary ArteriosclerosisDevelopmentDietDinoprostoneDiseaseDistalDuct (organ) structureEpithelialEpithelial CellsEpitheliumEquilibriumEtiologyExcretory functionExtracellular FluidGene ProteinsGenetic TranscriptionHomeostasisHumanHypertensionIn VitroIndomethacinIngestionIntercalated CellIsotonic ExerciseJUN geneKidneyKidney DiseasesLeadLinkLithiumMAPK14 geneMaintenanceMeasurableMediatingMediator of activation proteinMedicalMembraneMessenger RNAMetabolismMitogen-Activated Protein Kinase InhibitorMitogen-Activated Protein KinasesModelingMolecularMorbidity - disease rateMusNephrectomyNephronsNucleotidesOryctolagus cuniculusPTGS2 genePathway interactionsPersonsPhosphotransferasesPhysiologicalPlayPopulationProductionProstaglandin AntagonistsProstaglandinsProteinsRegulationResearchResearch PersonnelRiskRodentRoleSalineSignal PathwaySignal TransductionSodium ChlorideStrokeSurfaceTestingTranslationsTubular formationUrineWaterabsorptioncyclooxygenase 1cyclooxygenase 2extracellularfeedinghypertension treatmentinhibitor/antagonistmRNA Expressionmortalitymouse PGE synthase 1novelparacrinepreventprostaglandin E synthaseprostaglandin transporterresponsesalt sensitiveshear stresssynthetic enzymeurinary
项目摘要
DESCRIPTION (provided by applicant):
Synthesis of prostaglandins (PGs), local mediators of salt and water transport in the collecting duct (CD) of the distal nephron, is regulated, in part, by extracellular fluid volume. Extracellular volume expansion promoted by a high Na diet induces local increases in PG synthesis, specifically prostaglandin E2 (PGE2), which is measurable in urine and kidney. PGE2 is a potent inhibitor of Na and water reabsorption in the inner medullary collecting duct (IMCD). Inhibition of the PGE2 synthetic pathway is associated with avid renal Na reabsorption and the development of hypertension, suggesting a critical role for PGE2 in the maintenance of Na balance and blood pressure. In addition, salt-sensitive hypertension is associated with and linked to deficiencies in renal PGE2 synthesis and homeostasis. The physiologic and/or cellular triggers regulating PGE2 production in the distal nephron that maintain precise renal Na homeostasis are unknown. High distal flow rates, as occur in response to water or Na loading, are associated with increases in urinary PGE2 concentration in mice, rodents and humans, which in turn, enhance Na and water excretion. In humans and rodents unilateral nephrectomy also induces increases in distal tubular flow rates and PGE2 production in the solitary kidney, albeit without an alteration in volume status. As expected, inhibitors of PG synthesis reduce urinary Na excretion in these models, suggesting that PGs play an important role post- nephrectomy to maintain Na homeostasis. The common theme among these conditions is that distal tubular flow rate is increased, an observation that leads us to speculate that hydrodynamic forces regulate synthesis of PGE2, and in turn contribute to the final renal regulation of Na balance. Renal tubular epithelial cells respond to hydrodynamic forces associated with increases in urine flow rate, such as laminar shear stress (LSS), with increases in intracellular Ca2+ concentration ([Ca2+]i) which are believed to be transduced by the central cilium, found on the luminal surface of all renal tubular cells, except intercalated cells (though this is controversial). Other investigators have shown that increases in LSS/tubular flow rate regulate nucleotide secretion from renal tubular epithelial cells which, in turn, regulates flow- stimulated [Ca2+]i, suggesting another mechanism by which flow regulates [Ca2+]i. In microperfused cortical CD (CCD), intercalated cells (ICs) release a greater concentration of nucleotides than principal cells (PCs), suggesting the apical cilium is not required for flow-induced nucleotide release. In addition paracrine nucleotide signaling is associated with increased PGE2 production in the renal CD. In conditions of high tubular flow that occur with water loading or lithium ingestion, puringeric signaling and PGE2 production is augmented in CD epithelial isolated from these rodents, suggesting that high tubular flow rates regulate renal purinergic signaling and PGE2 production. However, to date the downstream effects of changes in tubular flow rate (and its hydrodynamic consequences) on intracellular signaling, gene transcription, and protein translation in tubular epithelial cells are largely unknown. Thus, we hypothesize that increases in tubular flow rate trigger nucleotide secretion and purinergic signaling, specifically increasing [Ca2+]i and MAPK activation, in renal tubular epithelia, and that activation of these pathways regulate the synthesis of ptgs-2 mRNA and PGE2 production which influences Na balance. This proposal aims to test this hypothesis by addressing the following specific aims (SAs): SA1: To identify the cellular/molecular mechanisms by which increases in LSS associated with increases in tubular flow rate induce downstream PG synthesis (specifically, PGE2) in vitro in CD cells. SA2: To test whether flow-stimulated transepithelial Na absorption (JNa) is regulated by endogenously produced, flow-stimulated PGE2 synthesis in native CDs isolated from normal and volume expanded mice.
PUBLIC HEALTH RELEVANCE:
Hypertension is a prevalent medical disorder affecting >30% of the adult U.S. population over the age of 40. It increases a person's risk for kidney disease, stroke, coronary artery disease, congestive heart failure and overall mortality. Reducing blood pressure to normal levels decreases the morbidity and mortality associated with hypertension, but does not bring morbidity and mortality back to control levels. The etiology behind the development of hypertension is unknown, but some investigators have demonstrated that abnormal renal prostaglandin metabolism, which affects Na homeostasis, can lead to Na retention and hypertension. In this research application, we identify a novel physiologic mechanism by which prostaglandin synthesis may be regulated by the kidney, and consequently, renal Na homeostasis. By elucidating the mechanisms by which urine flow rate can activate prostaglandin synthesis in the kidney, we can identify mechanisms which regulate renal Na homeostasis as well as target genes and proteins to prevent the development of hypertension.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAJEEV ROHATGI其他文献
RAJEEV ROHATGI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAJEEV ROHATGI', 18)}}的其他基金
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




