The Interplay Between the Circadian Clock and Plant Immune Mechanisms
昼夜节律钟与植物免疫机制之间的相互作用
基本信息
- 批准号:8368842
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-17 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgricultureAnimalsApoptosisArabidopsisAutoimmune DiseasesBehaviorBindingBiological ProcessBiological Response ModifiersBrainBrassicaceaeCell SurvivalCellsCircadian RhythmsCluster AnalysisComplexDataDefense MechanismsDetectionDiseaseDisease ResistanceDissectionEmployee StrikesEnvironmentEquilibriumEukaryotaFaminesGene ExpressionGenesGeneticGenetic EpistasisGenetic TranscriptionHealthHumanImmuneImmune responseImmunityInfectionInterleukin-1 ReceptorsJet Lag SyndromeKnock-outLeucine-Rich RepeatLifeLinkMediatingMetabolismMolecularMolecular GeneticsMolecular ProfilingMovementMutateNatural ImmunityNuclear TranslocationNucleotidesObesityOomycetesOrganOrganismOxidation-ReductionPatternPeripheralPesticidesPhysiologic pulsePhytophthoraPlant LeavesPlantsPopulationPotatoPredispositionProductionProteinsRegulationRelative (related person)ReporterReportingReproduction sporesResistanceResourcesRoleSalicylic AcidsSignal TransductionSiteSystemTestingTimeTissuesWhole Organismbasecircadian pacemakercofactordesignfitnessfunctional groupmathematical modelmutantoverexpressionpathogenpromoterresponsevpr Genes
项目摘要
DESCRIPTION (provided by applicant): The circadian clock has profound impacts on living organisms on earth. It maximizes the fitness of an organism by enabling it to coordinate metabolism and behavior with its environment. However, studies that unequivocally demonstrate the fitness benefits are scarce and the underlying molecular mechanisms are poorly known. The surprising discovery that the Arabidopsis clock component, CCA1, is a key regulator of RPP4-mediated resistance against the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) leads to this first in depth study of the interplay between the circadian clock
and plant immunity mechanisms. Aim 1 of this study will focus on the dissection of the regulatory circuitry between CCA1 and the resistance protein RPP4 using molecular genetics and systems approaches. A mathematical model will be made to explain how RPP4 perturbs CCA1-mediated rhythmic expression of defense genes resulting in programmed cell death of the infected cell and resistance to Hpa. Aim 2 will investigate the role of the circadian clock in systemic acquired resistance to test the hypothesis that the clock is reset during this immune response to redirect the resource to defense and promote cell survival. There are striking parallels between plant defense mechanisms and animal innate immunity. The influence of the circadian clock on animal immune responses has also been reported. However, in depth studies are challenging because of the inherent complexities of animal circadian clocks (central and peripheral) and of the microflora. Therefore, the proposed Arabidopsis-Hyaloperospora study will have a great advantage in revealing the design principles underline the interplay between the circadian clock and immunity besides providing detailed molecular mechanisms. The system perspectives on plants immune mechanisms will help us design better strategies to control crop disease and reduced the use of pesticides, which are hazardous to the environment and human health. Plant health has always had a significant impact on human health as demonstrated by the infamous Irish potato famine in 1840s, which was caused by Phytophthora infestans, a close relative of Hpa used in this study. With the world population exploding, developing better and safer agricultural practices is not a choice, but a necessity.
PUBLIC HEALTH RELEVANCE: The circadian clock affects many aspects of human lives including jetlag, obesity, and immunity. However, the molecular mechanisms are poorly understood because humans have the complex central clock in the brain as well as peripheral clocks in different organs. This project will use a simpler organism, thale cress, to study how the
circadian controls the timing of plant immune responses against infection and develop new ways to control crop disease and reduce the use of pesticides hazardous to human health and environment.
描述(由申请人提供):生物钟对地球上的生物体有着深远的影响。它通过使生物体的新陈代谢和行为与环境协调来最大限度地提高生物体的适应性。然而,明确证明健身益处的研究很少,并且对潜在的分子机制知之甚少。令人惊讶的发现是,拟南芥时钟组件,CCA 1,是RPP 4介导的抗卵菌病原体透明operonospora arabidopsidis(Hpa)抗性的关键调节因子,这导致了首次深入研究生物钟之间的相互作用
和植物免疫机制。本研究的目的1将集中在使用分子遗传学和系统方法的CCA 1和抗性蛋白RPP 4之间的调控回路的解剖。将建立一个数学模型来解释RPP 4如何干扰CCA 1介导的防御基因的节律性表达,从而导致受感染细胞的程序性细胞死亡和对Hpa的抗性。目的2将研究生物钟在系统获得性抵抗中的作用,以检验生物钟在这种免疫应答期间重置以将资源重新定向到防御和促进细胞存活的假设。植物的防御机制和动物的先天免疫之间有着惊人的相似之处。生物钟对动物免疫反应的影响也有报道。然而,由于动物生物钟(中枢和外周)和微生物群落的固有复杂性,深入研究具有挑战性。因此,拟进行的白葡萄球菌-透明operospora研究将具有很大的优势,除了提供详细的分子机制外,还可以揭示生物钟和免疫之间相互作用的设计原则。植物免疫机制的系统观点将有助于我们设计更好的策略来控制作物病害,减少对环境和人类健康有害的农药的使用。植物健康一直对人类健康产生重大影响,正如19世纪40年代臭名昭着的爱尔兰马铃薯饥荒所证明的那样,这是由本研究中使用的Hpa的近亲Phytophthora infestans引起的。随着世界人口的激增,发展更好、更安全的农业实践不是一种选择,而是一种必要。
生物钟影响人类生活的许多方面,包括时差,肥胖和免疫力。然而,分子机制知之甚少,因为人类大脑中有复杂的中央时钟,不同器官中也有外围时钟。这个项目将使用一种更简单的有机体,塔勒水芹,来研究
昼夜节律控制植物对感染的免疫反应的时间,并开发新的方法来控制作物病害,减少对人类健康和环境有害的农药的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinnian Dong其他文献
Xinnian Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinnian Dong', 18)}}的其他基金
Salicylic acid in immunity and health: A small phytohormone with big physiological impacts
水杨酸在免疫和健康中的作用:一种具有巨大生理影响的小植物激素
- 批准号:
9903387 - 财政年份:2016
- 资助金额:
$ 29.07万 - 项目类别:
Salicylic Acid in Immunity and Health: A Small Phytohormone with Big Physiological Impacts
水杨酸在免疫和健康中的作用:一种具有巨大生理影响的小植物激素
- 批准号:
10590686 - 财政年份:2016
- 资助金额:
$ 29.07万 - 项目类别:
Salicylic Acid in Immunity and Health: A Small Phytohormone with Big Physiological Impacts
水杨酸在免疫和健康中的作用:一种具有巨大生理影响的小植物激素
- 批准号:
10358488 - 财政年份:2016
- 资助金额:
$ 29.07万 - 项目类别:
Salicylic acid in immunity and health: A small phytohormone with big physiological impacts
水杨酸在免疫和健康中的作用:一种具有巨大生理影响的小植物激素
- 批准号:
9069247 - 财政年份:2016
- 资助金额:
$ 29.07万 - 项目类别:
The Interplay Between the Circadian Clock and Plant Immune Mechanisms
昼夜节律钟与植物免疫机制之间的相互作用
- 批准号:
8546422 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
The Interplay Between the Circadian Clock and Plant Immune Mechanisms
昼夜节律钟与植物免疫机制之间的相互作用
- 批准号:
8711496 - 财政年份:2012
- 资助金额:
$ 29.07万 - 项目类别:
Functional Analyses of NPR1 in Plant Defense
NPR1 在植物防御中的功能分析
- 批准号:
7117194 - 财政年份:2004
- 资助金额:
$ 29.07万 - 项目类别:
Functional Analyses of NPR1 in Plant Defense
NPR1 在植物防御中的功能分析
- 批准号:
7283570 - 财政年份:2004
- 资助金额:
$ 29.07万 - 项目类别:
相似海外基金
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
EU-Funded
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Cooperative Agreement
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Standard Grant
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 29.07万 - 项目类别:
Research Grant