Extending Bayesian Phylogenetic Analysis
扩展贝叶斯系统发育分析
基本信息
- 批准号:8209075
- 负责人:
- 金额:$ 29.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2013-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAmino AcidsApplications GrantsBacterial GenomeBayesian AnalysisBerylliumBiologyComplexComputational BiologyComputer softwareDNA SequenceDNA Sequence AnalysisDataElementsEvolutionFree EnergyGene ExpressionGenesGenetic DriftGenomeGenomicsGoalsGroupingHorizontal Gene TransferLearningMarkov ChainsMethodologyMethodsMindMinorityModelingMonte Carlo MethodNCI Scholars ProgramNatural SelectionsOrganismPaperPatternPhylogenetic AnalysisPhylogenyProcessProteinsRNARecording of previous eventsRecruitment ActivityRegulationRelative (related person)ResearchResearch Project GrantsScientistShapesStretchingStructureStudentsTraining SupportTreesWorkcomparativecomparative genomicscomputer programdesigngene functiongenome sequencingimprovedinnovationinterestnext generationprogramsprotein structure predictionpublic health relevance
项目摘要
DESCRIPTION (provided by applicant): For genomic analyses of bacterial genomes, horizontal gene transfer is a complicating factor, causing different genes to have discordant histories. I plan to develop methods for estimating bacterial species phylogeny in the face of this horizontal gene transfer. I will also develop methods that allow the biologist to uncover patterns in the data, by grouping together genes that have similar realized values of evolutionary parameters. Finally, I will develop more realistic models of protein evolution that take advantage of the most cutting-edge work for the ab initio prediction of protein structure. Using the same statistical framework, I will attempt to predict RNA secondary structure by combining information on the Gibb's free energy with comparative sequence information.
The methods developed in the course of this research will be implemented in the next generation of the MrBayes software. 1
PUBLIC HEALTH RELEVANCE: The comparison of DNA sequences from different organisms allows scientists to learn about the processes that shape genomes. For example, by comparing the DNA sequences of deferent genes, we can learn about how natural selection has acted. This proposal develops improved methods for the analysis of DNA sequences. 1
描述(申请人提供):对于细菌基因组的基因组分析,水平基因转移是一个复杂的因素,导致不同的基因具有不一致的历史。面对这种水平的基因转移,我计划开发评估细菌物种系统发育的方法。我还将开发一些方法,允许生物学家通过将具有相似进化参数实现值的基因组合在一起,来发现数据中的模式。最后,我将开发更现实的蛋白质进化模型,利用最尖端的工作对蛋白质结构进行从头计算预测。使用相同的统计框架,我将尝试通过结合关于Gibb自由能的信息和比较序列信息来预测RNA二级结构。
在本研究过程中开发的方法将在下一代MR Bayes软件中实现。1
与公共卫生相关:通过比较不同生物体的DNA序列,科学家可以了解形成基因组的过程。例如,通过比较不同基因的DNA序列,我们可以了解自然选择是如何起作用的。这项提议开发了分析DNA序列的改进方法。1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John P. HUELSENBECK其他文献
John P. HUELSENBECK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John P. HUELSENBECK', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.03万 - 项目类别:
Continuing Grant














{{item.name}}会员




