Software Systems for Detecting Rare Mutations
用于检测罕见突变的软件系统
基本信息
- 批准号:8209085
- 负责人:
- 金额:$ 58.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAutoimmune DiseasesBase SequenceBasic ScienceBioinformaticsBiologicalBiological AssayBiological ModelsBirthCancer DiagnosticsCancerousClinicalClinical ResearchCollectionComputer softwareDNA SequenceDataData CollectionData SetDatabasesDetectionDevelopmentDiagnosticDiseaseDocumentationDrug resistanceEnvironmentEpidemicFrequenciesFutureGeneticGenetic VariationGenomeGenomicsGerm-Line MutationGoalsHealthHumanImageryIndividualInformaticsInformation ResourcesKnowledgeLaboratoriesLifeMalignant NeoplasmsMarketingMeasurementMeasuresMedicineMethodsModelingMorphologic artifactsMutationNucleotidesPatientsPharmacotherapyProcessProteinsProviderRNAReportingResearchResearch InfrastructureResearch PersonnelResourcesSamplingSensitivity and SpecificityServicesSmall Business Innovation Research GrantSoftware ToolsSomatic MutationSystemSystematic BiasTechnologyTranslatingVariantVendorViralVisionWorkanticancer researchbasecancer cellcancer genomecancer genomicscancer typeclinically relevantcommercializationcomputerized data processingcostdata integrationdata reductiondesignfunctional genomicsgenetic variantgenome databaseimprovedinnovationinsightneoplastic cellnext generationnovelpathogenpractical applicationproduct developmentprognostic indicatorprototypepublic health relevanceresponsesoftware developmentsoftware systemstooltumor growthuser-friendlyweb-enabled
项目摘要
DESCRIPTION (provided by applicant): Next generation DNA sequencing (NGS) technologies hold great promise as tools for building a new understanding of health and disease. In the case of understanding cancer, deep sequencing provides more sensitive ways to detect the germline and somatic mutations that cause different types of cancer as well as identify new mutations within small subpopulations of tumor cells that can be prognostic indicators of tumor growth or drug resistance. Completing the transition from proof of principal applications to practical applications, however, requires that many basic and clinical research groups to be able to effectively utilize NGS. Ongoing technical developments and intense vendor competition amongst NGS platform and service providers are commoditizing data collection costs making systems more assessable. However, the single greatest impediment to the adoption of NGS technology is the lack of systems that create easy access to the immense bioinformatics and IT infrastructures needed to work with the data. In the case of variant analysis, such systems will need to process very large datasets, and accurately predict common, rare, and de novo levels of variation. Genetic variation must be presented in an annotation-rich, biological context to determine the clinical utility, frequency, and putative biological impact. Software systems used for this work must integrate data from many samples together with resources ranging from core analysis algorithms to application specific datasets to annotations, all woven into computational systems with interactive user interfaces (UIs). Such end-to-end systems currently do not exist. In this project, Geospiza will create integrated methods for robust detection and rich contextualization of genetic variants. Using variation analysis in cancer genomics as a model system, we will conduct research to improve assay sensitivity by deeply characterizing data from existing and emerging NGS platforms, quality value (QV) recalibration tools, and alignment algorithms, to understand the systematic artifacts that create errors in the data. To improve how researchers understand a variant's biological context, function and potential clinical utility, we will develop methods to combine assay results from many samples with de novo NGS datasets for assays like RNA-Seq and existing data such as those in GEO and SRA, and information resources from dbSNP, cancer genome databases, and ENCODE. Finally, we will develop the necessary scalable computing infrastructure and novel UI's needed to organize and process the data and explore and annotate the results. Through this work, and follow on product development, we will produce integrated sensitive assay systems that harness NGS for identifying very low (1:1000) levels of changes between DNA sequences to detect cancerous mutations and emerging drug resistance. Our tools and infrastructure can be later applied in assays designed to follow viral epidemics, and understand autoimmune disorders.
PUBLIC HEALTH RELEVANCE: The SBIR project "Software Systems for Detecting Rare Mutations" will deliver new software technologies to further advance the applications for deep DNA sequencing in personalized medicine by improving methods for detecting rare mutations that define cancer types and determine how a cancer cell may grow and respond to, or resist, treatment. In addition to improving cancer research and diagnostics, the software developed will have general use for any application where DNA sequencing is used to understand the genetic basis of human health, disease, and response to drug therapies.
描述(由申请人提供):下一代DNA测序(NGS)技术作为建立对健康和疾病的新认识的工具具有很大的前景。在了解癌症的情况下,深度测序提供了更灵敏的方法来检测导致不同类型癌症的种系和体细胞突变,以及识别肿瘤细胞小亚群中的新突变,这些突变可以作为肿瘤生长或耐药性的预后指标。然而,完成从主要应用证明到实际应用的过渡,需要许多基础和临床研究小组能够有效地利用NGS。NGS平台和服务提供商之间持续的技术发展和激烈的供应商竞争正在商品化数据收集成本,使系统更具可评估性。然而,采用NGS技术的唯一最大障碍是缺乏能够轻松访问数据所需的大量生物信息学和IT基础设施的系统。在变异分析的情况下,这样的系统将需要处理非常大的数据集,并准确地预测常见的、罕见的和新生的变异水平。遗传变异必须在注释丰富的生物学背景下呈现,以确定临床效用、频率和假定的生物学影响。用于这项工作的软件系统必须将来自许多样本的数据与从核心分析算法到应用特定数据集到注释的资源集成在一起,所有这些都编织到具有交互式用户界面(ui)的计算系统中。这样的端到端系统目前还不存在。在这个项目中,Geospiza将为遗传变异的鲁棒检测和丰富情境化创建集成方法。利用癌症基因组学中的变异分析作为模型系统,我们将通过深入表征现有和新兴的NGS平台、质量价值(QV)再校准工具和校准算法的数据来开展研究,以提高分析灵敏度,以了解导致数据错误的系统人为因素。为了提高研究人员对变异的生物学背景、功能和潜在临床应用的理解,我们将开发方法,将来自许多样本的分析结果与新的NGS数据集(如RNA-Seq)和现有数据(如GEO和SRA)以及来自dbSNP、癌症基因组数据库和ENCODE的信息资源相结合。最后,我们将开发必要的可扩展计算基础设施和新颖的UI,以组织和处理数据,并探索和注释结果。通过这项工作以及后续的产品开发,我们将生产出综合灵敏的检测系统,利用NGS识别DNA序列之间非常低(1:1000)的变化水平,以检测癌症突变和新出现的耐药性。我们的工具和基础设施以后可以应用于旨在跟踪病毒流行和了解自身免疫性疾病的分析。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limitations of the human reference genome for personalized genomics.
- DOI:10.1371/journal.pone.0040294
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Rosenfeld JA;Mason CE;Smith TM
- 通讯作者:Smith TM
2-(2,6-Dichloro-phen-yl)-N-(1,3-thia-zol-2-yl)acetamide.
2-(2,6-二氯-苯-基)-N-(1,3-噻唑-2-基)乙酰胺。
- DOI:10.1107/s1600536813006260
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Nayak,PrakashS;Narayana,B;Yathirajan,HS;Jasinski,JerryP;Butcher,RayJ
- 通讯作者:Butcher,RayJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TODD M SMITH其他文献
TODD M SMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TODD M SMITH', 18)}}的其他基金
BioHDF - Open Binary File Standards for Bioinformatics
BioHDF - 生物信息学开放二进制文件标准
- 批准号:
6992995 - 财政年份:2005
- 资助金额:
$ 58.27万 - 项目类别:
Second Generation DNA Sequence Management Tools
第二代 DNA 序列管理工具
- 批准号:
6622259 - 财政年份:2000
- 资助金额:
$ 58.27万 - 项目类别:
Second Generation DNA Sequence Management Tools
第二代 DNA 序列管理工具
- 批准号:
6912979 - 财政年份:2000
- 资助金额:
$ 58.27万 - 项目类别:
Second Generation DNA Sequence Management Tools
第二代 DNA 序列管理工具
- 批准号:
6444292 - 财政年份:2000
- 资助金额:
$ 58.27万 - 项目类别:
SECOND GENERATION OF DNA SEQUENCE MANAGEMENT TOOLS
第二代 DNA 序列管理工具
- 批准号:
6211967 - 财政年份:2000
- 资助金额:
$ 58.27万 - 项目类别:
SECOND GENERATION EST CLUSTER AND ANALYSIS TOOLS
第二代EST集群和分析工具
- 批准号:
6017182 - 财政年份:1999
- 资助金额:
$ 58.27万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 58.27万 - 项目类别:
Continuing Grant