Computer-aided Detection of Pulmonary Embolism on CT Pulmonary Angiography
CT肺血管造影计算机辅助检测肺栓塞
基本信息
- 批准号:8315984
- 负责人:
- 金额:$ 47.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAngiographyArchivesArteriesBenignBiological Neural NetworksBlood VesselsCause of DeathCharacteristicsClassificationComplexComputer Vision SystemsComputer-Assisted DiagnosisDataData SetDatabase Management SystemsDatabasesDetectionDevelopmentDiagnosisEvaluationEvaluation MethodologyGoalsGoldHealthImageInterobserver VariabilityLabelLocationLungLung diseasesMalignant - descriptorMethodsMorbidity - disease ratePatientsPerformancePublic HealthPulmonary EmbolismPulmonary vesselsReadingRecoveryReportingResearchScanningSchemeScreening procedureSecond OpinionsSeedsSliceSpeedStructureStructure of parenchyma of lungSystemTechniquesTestingTimeLineTrainingTreesUnited StatesVeinsX-Ray Computed Tomographybaseclinical Diagnosiscomputer aided detectioncomputerizeddesignimprovedindexingmortalityradiologistreconstructionsoft tissue
项目摘要
DESCRIPTION (provided by applicant): Pulmonary embolism (PE) is one of leading cause of death in the United States if untreated. Prompt diagnosis and treatment can dramatically reduce the mortality rate and morbidity of the disease. Computed tomographic pulmonary angiography (CTPA) has been reported to be an effective means for clinical diagnosis of PE. Interpretation of a CT scan for PE demands extensive reading efforts from a radiologist who has to visually track a large number of vessels in the lungs to detect suspected PEs. Despite the efforts, the sensitivities were reported to range from 53% to 100%. Computer-aided diagnosis (CAD) can be a viable approach to improving the sensitivity and efficiency of PE detection in CTPA images, as well as reducing inter-observer variability. The overall goal of the proposed project is to develop a robust CAD system that can provide a systematic screening of PE and serve as a second opinion by automatically alerting the radiologists to suspicious locations on 2D slice and 3D volume rendering display of the CTPA images. We will develop advanced computer vision techniques to enhance the characteristics of vessels, automatically extract the pulmonary vessels, reconstruct the vessel tree, detect candidate PEs, differentiate PE from normal pulmonary structures, and identify the true PEs. The techniques will be specifically designed for analysis of the complex vascular structures on CTPA images. The specific aims of this project include (1) collecting a large data set to develop and evaluate our CAD algorithms and systems, (2) establishing "gold standard" for performance evaluation, (3) developing robust pulmonary vessel segmentation methods, (4) developing robust pulmonary vessel tree reconstruction method to accurately track pulmonary vessels, trim veins and surrounding extensive lung diseases from vessel tree, and label reconstructed arterial tree, (5) developing and improving PE detection algorithms, including multi-prescreening method for the identification of suspicious PEs at different levels of artery branches, PE features extraction for development of classification methods, false positive reduction method based on feature analysis and fuzzy rule-based, linear, or neural network classifiers, (6) developing automatic PE index estimation method, (7) exploring performance evaluation methodology for computerized detection of PEs, and (8) performing observer ROC study to evaluate the effects of CAD on radiologists' accuracy in PE diagnosis. PUBLIC HEALTH RELEVANCE: The relevance of this research to public health lies in the fact that there is substantial false-negative diagnosis of PEs. CAD will potentially reduce missed PEs and improve the chance of timely treatment of patients, thus reducing the mortality rate and speed up recovery from this condition.
描述(由申请人提供):肺栓塞(PE)是美国的主要死亡原因之一,如果不及时治疗。及时诊断和治疗可显著降低该病的死亡率和发病率。计算机断层肺血管造影(CTPA)已被报道为PE临床诊断的有效手段。对CT扫描的PE进行解释需要放射科医生进行大量的阅读工作,放射科医生必须通过视觉跟踪肺部大量血管来检测可疑的PE。尽管做出了努力,但据报道,敏感性从53%到100%不等。计算机辅助诊断(CAD)可以提高CTPA图像中PE检测的灵敏度和效率,并减少观察者之间的可变性。拟议项目的总体目标是开发一个强大的CAD系统,该系统可以提供PE的系统筛选,并通过自动提醒放射科医生在CTPA图像的2D切片和3D体积渲染显示上的可疑位置,作为第二意见。我们将发展先进的计算机视觉技术,增强血管特征,自动提取肺血管,重建血管树,检测候选PE,将PE与正常肺结构区分开来,并识别真正的PE。该技术将专门用于分析CTPA图像上复杂的血管结构。该项目的具体目标包括:(1)收集大量数据集,以开发和评估我们的CAD算法和系统;(2)建立性能评估的“金标准”;(3)开发鲁棒肺血管分割方法;(4)开发鲁棒肺血管树重建方法,以准确跟踪肺血管,从血管树中修剪静脉和周围广泛的肺部疾病,并标记重建的动脉树。(5)开发和改进PE检测算法,包括用于识别不同级别动脉分支可疑PE的多重预筛选方法、用于开发分类方法的PE特征提取方法、基于特征分析和基于模糊规则、线性或神经网络分类器的假阳性降低方法;(6)开发PE自动指标估计方法;(7)探索PE计算机检测的性能评价方法;(8)进行观察ROC研究,评估CAD对放射科医师PE诊断准确性的影响。公共卫生相关性:本研究与公共卫生的相关性在于pe存在大量假阴性诊断。CAD有可能减少漏诊的pe,提高患者得到及时治疗的机会,从而降低死亡率,加快患者的康复。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method.
- DOI:10.1016/j.compmedimag.2011.04.001
- 发表时间:2012-01
- 期刊:
- 影响因子:5.7
- 作者:Zhou, Chuan;Chan, Heang-Ping;Chughtai, Aamer;Patel, Smita;Hadjiiski, Lubomir M.;Wei, Jun;Kazerooni, Ella A.
- 通讯作者:Kazerooni, Ella A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUAN ZHOU其他文献
CHUAN ZHOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHUAN ZHOU', 18)}}的其他基金
Histopathology correlated quantitative analysis of lung nodules with LDCT for early detection of lung cancer
肺结节的组织病理学相关定量分析与 LDCT 早期发现肺癌
- 批准号:
10398181 - 财政年份:2018
- 资助金额:
$ 47.03万 - 项目类别:
Histopathology correlated quantitative analysis of lung nodules with LDCT for early detection of lung cancer
肺结节的组织病理学相关定量分析与 LDCT 早期发现肺癌
- 批准号:
10164728 - 财政年份:2018
- 资助金额:
$ 47.03万 - 项目类别:
Computer-aided Detection of Pulmonary Embolism on CT Pulmonary Angiography
CT肺血管造影计算机辅助检测肺栓塞
- 批准号:
7730533 - 财政年份:2009
- 资助金额:
$ 47.03万 - 项目类别:
Computer-aided Detection of Pulmonary Embolism on CT Pulmonary Angiography
CT肺血管造影计算机辅助检测肺栓塞
- 批准号:
7896682 - 财政年份:2009
- 资助金额:
$ 47.03万 - 项目类别:
Computer-aided Detection of Pulmonary Embolism on CT Pulmonary Angiography
CT肺血管造影计算机辅助检测肺栓塞
- 批准号:
8112600 - 财政年份:2009
- 资助金额:
$ 47.03万 - 项目类别:
Computer-Aided Detection of Pulmonary Embolism on CT Pulmonary Angiography
CT 肺血管造影计算机辅助检测肺栓塞
- 批准号:
7229841 - 财政年份:2006
- 资助金额:
$ 47.03万 - 项目类别:
Computer-Aided Detection of Pulmonary Embolism on CT Pulmonary Angiography
CT 肺血管造影计算机辅助检测肺栓塞
- 批准号:
7015959 - 财政年份:2006
- 资助金额:
$ 47.03万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Research Grant