FlashLite: A High Performance Machine for Data Intensive Science

FlashLite:用于数据密集型科学的高性能机器

基本信息

  • 批准号:
    LE140100061
  • 负责人:
  • 金额:
    $ 66.68万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
  • 财政年份:
    2014
  • 资助国家:
    澳大利亚
  • 起止时间:
    2014-01-01 至 2015-07-29
  • 项目状态:
    已结题

项目摘要

FlashLite: a high performance machine for data intensive science: The 21st century has been described as the century of data. Experts predict an exponential growth in the amount of data that will be captured, generated and archived. Australia has made significant progress towards addressing some of the opportunities and infrastructure challenges posed by such rapid increase in data volumes. However, these investments do not address the growing need to process data. Conventional supercomputers are unable to meet the challenges of the data explosion. The large gap in latency and bandwidth between the processor, memory and disk subsystems means that the processor is often idle waiting to fetch data. This project will build a platform focussed on data intensive science.
FlashLite:用于数据密集型科学的高性能机器:21世纪被描述为数据的世纪。专家预测,将被捕获、生成和存档的数据量将呈指数级增长。澳大利亚在应对数据量快速增长带来的一些机遇和基础设施挑战方面取得了重大进展。然而,这些投资并不能满足日益增长的数据处理需求。传统的超级计算机无法应对数据爆炸的挑战。处理器、内存和磁盘子系统之间的延迟和带宽差距很大,这意味着处理器经常处于空闲状态,等待获取数据。该项目将建立一个专注于数据密集型科学的平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof David Abramson其他文献

Prof David Abramson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof David Abramson', 18)}}的其他基金

Tuning parallel applications on software-defined supercomputers
调整软件定义超级计算机上的并行应用程序
  • 批准号:
    LP200200805
  • 财政年份:
    2022
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Projects
Automatic Energy Tuning of Parallel Applications on a Hybrid Supercomputer
混合超级计算机上并行应用的自动能量调整
  • 批准号:
    LP150100837
  • 财政年份:
    2016
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Projects
Software debuggers for next generation heterogeneous supercomputers
下一代异构超级计算机的软件调试器
  • 批准号:
    LP120200784
  • 财政年份:
    2012
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Projects
A Grid based platform for multi-scaled biological simulation
基于网格的多尺度生物模拟平台
  • 批准号:
    DP1094333
  • 财政年份:
    2010
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Discovery Projects
A scalable debugging framework for petascale computers
适用于千万亿级计算机的可扩展调试框架
  • 批准号:
    LP0883738
  • 财政年份:
    2009
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Projects
A high throughput Grid based environment for real time bio-medical imaging
用于实时生物医学成像的高吞吐量基于网格的环境
  • 批准号:
    LP0882735
  • 财政年份:
    2008
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Projects
Data Grid -- Access Layer
数据网格——访问层
  • 批准号:
    LE0775582
  • 财政年份:
    2007
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
A Unified Grid Programming Methodology for Global e-Science
全球电子科学的统一网格编程方法
  • 批准号:
    DP0773741
  • 财政年份:
    2007
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Discovery Projects
GriddLeS: Building Grid Applications from Legacy Software
GriddLeS:从遗留软件构建网格应用程序
  • 批准号:
    LP0347472
  • 财政年份:
    2003
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Linkage Projects

相似海外基金

Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
  • 批准号:
    23K01372
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Quantification of Operative Performance via Simulated Surgery, Capacitive Sensing, and Machine Learning to Improve Surgeon Performance & Medical Device Develop
SBIR 第二阶段:通过模拟手术、电容传感和机器学习量化手术表现,以提高外科医生的表现
  • 批准号:
    2223976
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Cooperative Agreement
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Standard Grant
High Performance Computing and Machine Learning Infrastructure for Oregon Life Sciences
俄勒冈生命科学的高性能计算和机器学习基础设施
  • 批准号:
    10630777
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
Machine learning to find new extraction solvents that has both excellent performance for separation and recovery of rare metals and low environmental impacts
机器学习寻找新的萃取溶剂,该溶剂既具有优异的稀有金属分离和回收性能,又对环境影响低
  • 批准号:
    23H01756
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-Performance Machine Learning Computing Using Non-deterministic Superconducting Circuits
使用非确定性超导电路的高性能机器学习计算
  • 批准号:
    23H03365
  • 财政年份:
    2023
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving flexibility and performance of the Acute Care Enhanced Surveillance (ACES) System for public health surveillance: an ensemble of state-of-the-art machine learning and rule-based natural language processing methods
提高用于公共卫生监测的急性护理增强监测 (ACES) 系统的灵活性和性能:最先进的机器学习和基于规则的自然语言处理方法的集合
  • 批准号:
    468864
  • 财政年份:
    2022
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Operating Grants
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Studentship
Improving Healthcare Systems' Performance during Mass Casualty Incidents using a Simulation, Optimization, and Machine Learning approach
使用模拟、优化和机器学习方法提高大规模伤亡事件期间医疗保健系统的性能
  • 批准号:
    2750907
  • 财政年份:
    2022
  • 资助金额:
    $ 66.68万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了