STATISTICAL AND BIOMECHANICAL ANALYSIS OF HIP DYSPLESIA

髋关节发育不良的统计和生物力学分析

基本信息

  • 批准号:
    8363716
  • 负责人:
  • 金额:
    $ 8.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. STATISTICAL AND BIOMECHANICAL ANALYSIS OF HIP DYSPLASIA Background: Acetabular dysplasia may be the leading cause of premature osteoarthritis (OA) of the hip. However, the relationship between the altered geometry associated with dysplasia and the resulting stresses in and around the joint is poorly understood. Recognizing the mechanical consequences of different and often subtle forms of dysplasia allows earlier identification of "at risk" hips, in turn allowing the initiation of earlier treatment. This research delineates the true spectrum of this three-dimensional pathology by quantifying stress transfer in the hip joint and predicting the long-term success rate of corrective surgeries. Rationale: Much of orthopaedics is governed by mechanics and much of mechanics is dictated by shape. Thus, we believe that the potential impact of robust, open-source software tools for meshing and statistical shape analysis is profound. The ability to study statistical shape models in a biomechanical context has several important implications, including the ability to drive the biomechanical simulations of patient groups using group-averaged geometries, the ability to make group comparisons of both geometry and biomechanical parameters in a way that systematically captures group variability, and finally, the ability to study sensitivities in biomechanical outcomes with respect to geometric variability. Questions: This project presents some important challenges for algorithm and software development in the CIBC: (1) Achieving a sufficient level of robustness to compete with the commercial pipeline; (2) Validating the quality of the elements in the biomechanics applications; (3) Extending the tools in a general way to deal with open geometries; (4) Addressing some of the issues of building joint models (multiple surfaces) with tight tolerances (bones separated by cartilage); and (5) Achieving a proper anatomical alignment of the bones. Design & Methods: This DBP relies on two collaborative methods: (1) Patient-specific finite element (FE) models: For this aim, we will work with the Bioengineering and Orthopedics group at the University of Utah to deploy Seg3D and BioMesh software and facilitate its use; and (2) Statistical shape models of the hip joint: For this aim, we will apply and extend the software tools available in ShapeWorks. The strategy will be to examine the efficacy of the current technology and extend it, as necessary, to be able to address the needs of the DBP.
这个子项目是利用资源的许多研究子项目之一。 由NIH/NCRR资助的中心拨款提供。对子项目的主要支持 子项目的首席调查员可能是由其他来源提供的, 包括美国国立卫生研究院的其他来源。为子项目列出的总成本可能 表示该子项目使用的中心基础设施的估计数量, 不是由NCRR赠款提供给次级项目或次级项目工作人员的直接资金。 髋关节发育不良的统计和生物力学分析 背景: 髋臼发育不良可能是髋关节早产性骨关节炎的主要原因。 然而,与发育不良相关的改变的几何构型与 对接合处及其周围产生的应力知之甚少。认识到 不同且通常是微妙形式的发育不良的机械后果允许更早 识别“有风险”的髋关节,进而允许开始早期治疗。这 研究通过量化描绘了这种三维病理的真实光谱 髋关节应力传递与矫正远期成功率的预测 手术。 基本原理: 许多骨科是由机械学支配的,而许多机械学是由 形状。因此,我们认为强大的开源软件工具对 网格化和统计形状分析是深刻的。研究统计形状的能力 生物力学背景下的模型有几个重要的含义,包括 使用组平均来驱动患者组的生物力学模拟 几何学,对几何学和生物力学进行群体比较的能力 参数,以一种系统地捕捉群体变异性的方式,最后,能力 研究生物力学结果对几何变异性的敏感性。 问题: 这个项目给算法和软件开发带来了一些重要的挑战 在CIBC中:(1)实现足够的健壮性水平,以与商业 管道;(2)生物力学应用中元素的质量验证;(3) 以通用的方式扩展了工具以处理开放几何;(4)解决了一些 构建具有严格公差(骨骼)的关节模型(多个曲面)的问题 由软骨分隔);以及(5)实现骨骼的适当解剖排列。 设计与方法: 这种DBP依赖于两种协作方法:(1)患者特定的有限元(FE) 模型:为了这个目标,我们将与生物工程和整形外科小组在 犹他大学部署Seg3D和BioMesh软件并促进其使用;以及(2) 髋关节的统计形状模型:为此,我们将应用和扩展 ShapeWorks中提供的软件工具。战略将是检查 当前技术,并在必要时加以扩展,以便能够满足 DBP。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROSS T WHITAKER其他文献

ROSS T WHITAKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROSS T WHITAKER', 18)}}的其他基金

IMAGE BASED MODELING
基于图像的建模
  • 批准号:
    8363714
  • 财政年份:
    2011
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE BASED SMALL ANIMAL PHENOTYPING
基于图像的小动物表型分析
  • 批准号:
    8363710
  • 财政年份:
    2011
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE PROCESSING AND GEOMETRICAL MODELING
图像处理和几何建模
  • 批准号:
    8172257
  • 财政年份:
    2010
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE BASED PHENOTYPING
基于图像的表型分析
  • 批准号:
    8172261
  • 财政年份:
    2010
  • 资助金额:
    $ 8.88万
  • 项目类别:
CT IMAGING IN TRANSGENIC MOUSE MODELS FOR HUMAN TUMORS
人类肿瘤转基因小鼠模型中的 CT 成像
  • 批准号:
    8172259
  • 财政年份:
    2010
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE PROCESSING AND GEOMETRICAL MODELING
图像处理和几何建模
  • 批准号:
    7957215
  • 财政年份:
    2009
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE BASED PHENOTYPING
基于图像的表型分析
  • 批准号:
    7957219
  • 财政年份:
    2009
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE BASED PHENOTYPING
基于图像的表型分析
  • 批准号:
    7723098
  • 财政年份:
    2008
  • 资助金额:
    $ 8.88万
  • 项目类别:
MICROSCOPY IMAGE ANALYSIS AND VISUALIZATION
显微图像分析和可视化
  • 批准号:
    7723095
  • 财政年份:
    2008
  • 资助金额:
    $ 8.88万
  • 项目类别:
IMAGE AND SURFACE PROCESSING FOR BRAIN STRUCTURE ANALYSIS
用于脑结构分析的图像和表面处理
  • 批准号:
    7669312
  • 财政年份:
    2008
  • 资助金额:
    $ 8.88万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了