CHARACTERIZATION OF THE NEURITE PHOSPHOPROTEOME

神经突磷酸蛋白质组的表征

基本信息

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A major goal of the Klemke laboratory is to understand the molecular signaling mechanisms that control growth cone and neurite formation. The ability of neuronal cells to extend and retract neurites is important for proper brain development and is important for spinal cord regeneration after injury. However, it has been difficult to study this process because it has not been possible to biochemically isolate the neurite for protein analysis. Recently, we developed a new biochemical method using microporous technology to purify the neurite in large scale from neuronal cells (BioTechniques. 2003; 35:254-256). This novel system will allow us to perform large-scale proteomics to identify the key regulatory proteins that facilitate growth cone formation and neurite extension and retraction in response to chemoattractants or chemorepulsion agents, respectively. We will use mouse and human neuroblastoma cells for these studies as they readily extend/retract neurites. Initial analysis using these cells revealed that phosphotyrosine (PY) proteins are highly activated and enriched in the neurite fraction compared to the soma. Pharmacological inhibition of tyrosine phosphorylation inhibits growth cone formation and neurite extension indicating that complex signaling cascades control this process through modulation of PY networks. Therefore, our objective is to characterize the PY proteins (neurite phosphoproteome) responsible for growth cone formation and neurite extension/retraction. PY proteins from isolated somas and extending or retracting neurites will be immunoaffinity purified with anti-PY antibodies and/or enriched for phosphopeptides using an IMAC column and then analyzed using the Center's high sensitivity, high resolution LC-MS/MS capabilities to identify key proteins and determine the specific locations of the phosphorylated residues. Functional testing will then be performed using siRNA protein knockdown and site directed mutagenesis followed by cell-based assays and animal models of neurite formation established in our laboratory. Information gained from these experiments will be analyzed using bioinformatics and computer modeling to reveal potential phosphotyrosine networks that contribute to neurite formation during spinal cord injury and neuronal degeneration. Results from our study will provide valuable information on the phosphosignals that control neurite formation and provide targets for therapeutic treatment of neurodegenerative diseases as well as spinal cord regeneration. Specific Aims: 1. To identify PY proteins and their specific sites of tyrosine phosphorylation in extending or retracting neurites. 2. To functionally test identified PY proteins using siRNA protein knockdown and site directed mutagenesis of key phosphotyrosine sites (as identified by MS) followed by cell-based assays and animal models of neurite formation established in our laboratory. 3. To map the putative signaling cascades and develop functional relationships among the PY proteins using bioinformatics and computer modeling systems. Methods for Specific Aim 1: An initial "bottom-up" analysis of immunopurified neurite PY proteins will be performed using PNNL's high sensitivity and high resolution LC-MS/MS. Immunopurified PY proteins will be subjected to tryptic digestion, peptide purification, and an off-line strong cation exchange separation coupled to LC-MS/MS analysis for the identification of PY proteins. To identify the specific tyrosine phosphorylation sites on the phosphoproteins, a portion of the tryptic digest will be passed through an IMAC column to enrich for phosphopeptides present in the digest following methyl etherification of the peptides. This phosphopeptide enriched sample will then be analyzed by LC-MS/MS to determine the identities of the phosphopeptides and the specific locations of the phosphorylated residues which can then be targeted for achieving specific aim #2: functional testing of key PY proteins using siRNA-directed knockdown approaches and/or site directed mutagenesis strategies. Information gained from aims 1 and 2 will then be analyzed using bioinformatics and computer modeling to reveal potential phosphotyrosine networks that contribute to neurite formation, which is important for proper brain development and spinal cord regeneration after injury.
这个子项目是许多利用资源的研究子项目之一 由NIH/NCRR资助的中心拨款提供。子项目的主要支持 而子项目的主要调查员可能是由其他来源提供的, 包括其它NIH来源。 列出的子项目总成本可能 代表子项目使用的中心基础设施的估计数量, 而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。 Klemke实验室的一个主要目标是了解控制生长锥和神经突形成的分子信号机制。 神经元细胞延伸和缩回神经突的能力对于适当的脑发育是重要的,并且对于损伤后的脊髓再生是重要的。 然而,研究这一过程一直很困难,因为还不可能通过生物化学方法分离神经突进行蛋白质分析。 最近,我们开发了一种新的生物化学方法,使用微孔技术从神经元细胞中大规模纯化神经突(BioTechniques. 2003; 35:254-256)。 这种新的系统将使我们能够进行大规模的蛋白质组学,以确定关键的调节蛋白,促进生长锥的形成和神经突的延伸和收缩,分别响应于化学引诱剂或化学排斥剂。 我们将使用小鼠和人类神经母细胞瘤细胞进行这些研究,因为它们容易伸展/收缩神经突。使用这些细胞的初步分析表明,磷酸酪氨酸(PY)蛋白是高度活化的,并在神经突馏分相比,索马丰富。 酪氨酸磷酸化的药理学抑制抑制生长锥形成和神经突延伸,表明复杂的信号级联通过PY网络的调节来控制该过程。 因此,我们的目标是表征PY蛋白(神经突磷酸化蛋白质组)负责生长锥的形成和神经突的延伸/收缩。 将使用抗PY抗体和/或使用IMAC柱富集磷酸肽对来自分离的胞体和延伸或收缩的神经突的PY蛋白进行免疫亲和纯化,然后使用中心的高灵敏度、高分辨率LC-MS/MS能力进行分析,以鉴定关键蛋白并确定磷酸化残基的具体位置。 然后使用siRNA蛋白敲低和定点诱变进行功能测试,然后进行基于细胞的测定和我们实验室建立的神经突形成动物模型。 从这些实验中获得的信息将使用生物信息学和计算机建模进行分析,以揭示潜在的磷酸酪氨酸网络,有助于脊髓损伤和神经元变性过程中的神经突形成。 我们的研究结果将为控制神经突形成的磷酸信号提供有价值的信息,并为神经退行性疾病的治疗和脊髓再生提供靶点。 具体目标: 1. 鉴定PY蛋白及其酪氨酸磷酸化的特异位点。 2. 通过siRNA蛋白敲低和关键磷酸酪氨酸位点的定点诱变(通过MS鉴定),然后通过我们实验室建立的基于细胞的测定和神经突形成动物模型,对鉴定的PY蛋白进行功能性检测。 3. 利用生物信息学和计算机模拟系统对PY蛋白的信号通路进行定位,并建立PY蛋白之间的功能关系。 具体目标1的方法:将使用PNNL的高灵敏度和高分辨率LC-MS/MS对免疫纯化的神经突PY蛋白进行初始“自下而上”分析。免疫纯化的PY蛋白将经过胰蛋白酶消化、肽纯化和离线强阳离子交换分离,结合LC-MS/MS分析,用于识别PY蛋白。 为了鉴定磷蛋白上的特异性酪氨酸磷酸化位点,将一部分胰蛋白酶消化物通过IMAC柱,以富集肽甲醚化后消化物中存在的磷酸肽。 然后通过LC-MS/MS分析该富含磷酸肽的样品,以确定磷酸肽的身份和磷酸化残基的具体位置,然后可以靶向磷酸化残基以实现具体目标#2:使用siRNA定向敲低方法和/或定点诱变策略对关键PY蛋白进行功能测试。 然后将使用生物信息学和计算机建模分析从目标1和2获得的信息,以揭示有助于神经突形成的潜在磷酸酪氨酸网络,这对损伤后的适当大脑发育和脊髓再生非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard L. Klemke其他文献

Richard L. Klemke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard L. Klemke', 18)}}的其他基金

Bioengineering a Novel Therapeutic Transporter that Crosses the Blood Brain Barrier to Treat Brain Disorders
生物工程设计一种新型治疗转运蛋白,可跨越血脑屏障治疗脑部疾病
  • 批准号:
    10324736
  • 财政年份:
    2021
  • 资助金额:
    $ 2.87万
  • 项目类别:
Fingerprinting Invasive Membrane Protrusions to Discover Metastatic Signatures
对侵入性膜突起进行指纹识别以发现转移特征
  • 批准号:
    8913909
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Vascular communication in metastatic brain colonization
转移性脑定植中的血管通讯
  • 批准号:
    8673646
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Discovering Spatial Mechanisms Regulating Metastatic Invadopodia in PDAC
发现调节 PDAC 转移性侵袭伪足的空间机制
  • 批准号:
    10403566
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Discovering Spatial Mechanisms Regulating Metastatic Invadopodia in PDAC
发现调节 PDAC 转移性侵袭伪足的空间机制
  • 批准号:
    10622571
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Fingerprinting Invasive Membrane Protrusions to Discover Metastatic Signatures
对侵入性膜突起进行指纹识别以发现转移特征
  • 批准号:
    8761301
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Vascular communication in metastatic brain colonization
转移性脑定植中的血管通讯
  • 批准号:
    8830949
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Discovering Spatial Mechanisms Regulating Metastatic Invadopodia in PDAC
发现调节 PDAC 转移性侵袭伪足的空间机制
  • 批准号:
    9973869
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Discovering Spatial Mechanisms Regulating Metastatic Invadopodia in PDAC
发现调节 PDAC 转移性侵袭伪足的空间机制
  • 批准号:
    10249150
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:
Fingerprinting Invasive Membrane Protrusions to Discover Metastatic Signatures
对侵入性膜突起进行指纹识别以发现转移特征
  • 批准号:
    9127939
  • 财政年份:
    2014
  • 资助金额:
    $ 2.87万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 2.87万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 2.87万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 2.87万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.87万
  • 项目类别:
    Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 2.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 2.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 2.87万
  • 项目类别:
    Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
  • 批准号:
    10699504
  • 财政年份:
    2023
  • 资助金额:
    $ 2.87万
  • 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
  • 批准号:
    10491642
  • 财政年份:
    2023
  • 资助金额:
    $ 2.87万
  • 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
  • 批准号:
    10782567
  • 财政年份:
    2023
  • 资助金额:
    $ 2.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了