Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
基本信息
- 批准号:8464128
- 负责人:
- 金额:$ 42.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-05-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingActive SitesAffectAffinityAmino Acid SequenceAmino AcidsAnimalsAntibioticsArchaeaArchitectureBacteriaBacterial Antibiotic ResistanceBehaviorBindingBiochemicalBiochemistryBioinformaticsBiologicalBiological AssayBiological ProcessBiophysicsCatalogingCatalogsCatalysisCellsCharacteristicsDataDevelopmentDiabetes MellitusDiseaseElementsEngineeringEnvironmentEukaryotaExhibitsGeneticGenetic VariationGenomicsGoalsGrantGrowthHealthHumanImageryInfectionInvestigationIonsKineticsLeadLearningLifeMalignant NeoplasmsMeasuresMediatingMetalsMicrobeMolecularMolecular BiologyMonitorNatureOutputPeptide Sequence DeterminationPharmaceutical PreparationsPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhylogenetic AnalysisPhysiologyPlantsPredispositionProkaryotic CellsPropertyProtein DephosphorylationProteinsReactionRegulationResearchSignal TransductionSignaling ProteinSite-Directed MutagenesisSpecificitySpeedStagingStimulusStructureSystemTestingTherapeutic AgentsTimeTitrationsVirulenceWaterWorkX-Ray Crystallographybacterial resistancebiological information processingcell growthcomputerized data processingdesignexperiencegenome sequencinginnovationinterestkillingsmicrobialmicroorganismpathogenreaction rateresearch studyresponsesensorsmall moleculestructural biologysuccess
项目摘要
DESCRIPTION (provided by applicant): The ability to respond to stimuli is often considered to be a key characteristic of life. Cells can detect new conditions, transduce that information into a usable form, and execute an appropriate response. One common signal transduction strategy is to represent information by the specific and transient placement of phosphoryl groups on proteins. Errors in signal transduction can lead to diseases (e.g. cancer, diabetes), and drugs have been developed to block aberrant signaling processes. Understanding the mechanisms, regulation, and impact of protein phosphorylation is thus of fundamental interest, as well as of practical significance to human health. Microorganisms are the dominant form of life on Earth by many measures, including genetic diversity, raw numbers, environmental distribution, and evolutionary experience. Thus, it is logical to seek basic signal transduction principles in microbes. Our long-term goal is comprehensive understanding of signal transduction by two-component regulatory systems, which occur in microorganisms from all three phylogenetic domains. In a typical two-component system, a sensor kinase detects stimuli and autophosphorylates. A response regulator then catalyzes phosphorylation from the sensor kinase (or from small molecules), which turns on the response. Response regulator dephosphorylation, either self-catalyzed or mediated by a phosphatase, ends the response. The kinetics of phosphoryl group reactions are important to synchronize responses with stimuli. Genome sequencing presents a challenge (a rapidly widening gap between the number of known proteins and what can be studied) and an opportunity (diverse and extensive sequence data). To learn how to reveal properties of tens of thousands of two-component proteins from sequence data alone, our innovative research strategy focuses on sequence differences (rather than similarities) between the conserved domains of sensor kinases or response regulators. We were productive during the previous grant period with an approach that integrated biochemistry, bioinformatics, biophysics, genetics, molecular biology, and structural biology. We identified factors that greatly affect response regulator reaction rates, but do not account for the entire known range. Our elucidation of the CheX mechanism, together with our previous work on CheZ, set the stage for a unified hypothesis of response regulator phosphatases. Building on our success, we will identify factors that affect phosphodonor binding and autophosphorylation (Aim 1), autodephosphorylation (Aim 2), and sensor kinase-mediated dephosphorylation (Aim 3) of response regulators and characterize underlying mechanisms. Antibiotic resistance of bacterial and fungal pathogens is a major and increasing threat to human health. Our study of the binding of small molecules to response regulators may influence design of therapeutic agents to disable critical two-component systems of microbial pathogens. The results of our project could also be used to predict or manipulate the signaling kinetics of two-component systems, or engineer synthetic regulatory circuits with specific timing characteristics. Fundamental principles of signal transduction may also emerge.
描述(由申请人提供):对刺激做出反应的能力通常被认为是生命的一个关键特征。细胞可以检测新的条件,将信息转换成可用的形式,并执行适当的响应。一种常见的信号转导策略是通过蛋白质上磷酰基的特定和瞬时放置来表示信息。信号转导中的错误可能导致疾病(例如癌症、糖尿病),并且已经开发出药物来阻止异常的信号转导过程。因此,了解蛋白质磷酸化的机制、调节和影响具有根本意义,对人类健康也具有实际意义。 从遗传多样性、原始数量、环境分布和进化经验等许多方面来看,微生物是地球上生命的主要形式。因此,寻找微生物的基本信号转导原理是合乎逻辑的。我们的长期目标是全面了解双组分调控系统的信号转导,这些系统发生在来自所有三个系统发育领域的微生物中。在典型的双组分系统中,传感器激酶检测刺激和自磷酸化。然后,响应调节器催化传感器激酶(或小分子)的磷酸化,从而启动响应。反应调节剂去磷酸化,无论是自催化还是由磷酸酶介导,都会终止反应。磷酰基反应的动力学对于同步反应与刺激很重要。 基因组测序既带来了挑战(已知蛋白质的数量与可研究的蛋白质之间的差距迅速扩大),也带来了机遇(多样化且广泛的序列数据)。为了了解如何仅从序列数据揭示数以万计的双组分蛋白质的特性,我们的创新研究策略侧重于传感器激酶或反应调节器的保守域之间的序列差异(而不是相似性)。在上一个资助期间,我们采用了整合生物化学、生物信息学、生物物理学、遗传学、分子生物学和结构生物学的方法,取得了丰硕的成果。我们确定了极大影响响应调节器反应速率的因素,但并未考虑整个已知范围。我们对 CheX 机制的阐明,加上我们之前对 CheZ 的工作,为反应调节磷酸酶的统一假设奠定了基础。在我们成功的基础上,我们将确定影响反应调节剂的磷酸供体结合和自磷酸化(目标 1)、自去磷酸化(目标 2)和传感器激酶介导的去磷酸化(目标 3)的因素,并描述潜在机制。 细菌和真菌病原体的抗生素耐药性是对人类健康的主要且日益严重的威胁。我们对小分子与反应调节剂结合的研究可能会影响治疗剂的设计,以禁用微生物病原体的关键双组分系统。我们项目的结果还可用于预测或操纵双组分系统的信号动力学,或设计具有特定时序特征的合成调节电路。信号转导的基本原理也可能出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert B. Bourret其他文献
Robert B. Bourret的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert B. Bourret', 18)}}的其他基金
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7931609 - 财政年份:2009
- 资助金额:
$ 42.01万 - 项目类别:
Molecular Mechanisms of Signaling in E. coli Chemotaxis
大肠杆菌趋化性信号转导的分子机制
- 批准号:
7151918 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7916968 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
MOLECULAR MECHANISMS OF SIGNAL TRANDUCTION BY CHEY
Chey 的信号转导分子机制
- 批准号:
2701616 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
MOLECULAR MECHANISMS OF SIGNALING IN E COLI CHEMOTAXIS
大肠杆菌趋化性信号传导的分子机制
- 批准号:
6180358 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7685867 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
8233800 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7741749 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
9310656 - 财政年份:1994
- 资助金额:
$ 42.01万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 42.01万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 42.01万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 42.01万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 42.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 42.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 42.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 42.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 42.01万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 42.01万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 42.01万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




