Multiscale Modeling of Thrombus Initiation in Cardiovascular Prostheses

心血管假体中血栓引发的多尺度建模

基本信息

  • 批准号:
    8228120
  • 负责人:
  • 金额:
    $ 26.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-16 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A multiscale model will be developed to describe in a physically accurate manner the dynamics of blood as it flows through constricted geometries. This study is important because in cardiovascular prostheses (heart valves, stents, and ventricular assist devices) such constricted geometries (narrow leakage gaps, hinges) are locations where platelet damage can be caused by high fluid shear stresses; platelet activation and collisions can then trigger aggregation and subsequent thrombus formation. The key idea underlying this proposal is that the phenomena that lead to thrombus initiation are intrinsically multiscale in nature. Device scales are ~centimeters, while the constricted geometries are ~100 microns wide and the blood cells are order of microns in size. Blood flowing through 100 micron gaps cannot be treated as a homogeneous fluid and platelets cannot be treated as passive point particles. In fact, the larger, deformable and relatively numerous red blood cells play a crucial role in the mechanics of platelets. Therefore, a physically correct model of shear-induced platelet activation (SIPA) must account for the dynamics of blood cells, the flow geometry and the flow of plasma. To better understand the micro-scale interaction that leads to SIPA and to guide beter design of prostheses, accurate computational modeling of blood flow through constricted and contorted micro-geometries will be extremely useful. The challenge for modeling is that even in constricted micro-geometries there are millions of blood cells, thus well resolved 3-D computations are presently infeasible. Therefore, the proposed multiscale model: (1) will be 2-dimensional and (2) will couple fully resolved micro-scale models of red blood cells and platelets with coarse-grained meso-scale models in order to make possible the tracking of multitudes of (~104) cells. To ensure physical validity, model predictions (for example cell trajectories, cell-cell interactions and flow field characteristics) will be compared with tandem micro-particle image velocimetry (m-PIV) experiments. Furthermore, platelets will be tracked in the m-PIV visualizations and biological assays will be employed to determine the levels of activation and aggregation of platelets. By intimately combining computations and experiments, we seek to obtain: (1) a clear picture of the micro-mechanics of blood cells and (2) quantitative correlation between local shear stresses and shear gradients and the tendency of platelets to exhibit the signals that mark thrombus initiation. The work is highly challenging and it will advance the state-of-the-art by: (1) computing the dynamics of large numbers of cells immersed in blood flow; (2) devising techniques for transferring information from fully-resolved micro-scale to coarse-grained meso-scale calculations; (3) intimately coupling experimental and computational studies to understand micro-scale dynamics; and (4) developing the ability to perform truly large scale parallel computations with broad application to a variety of biomedical systems. These cutting-edge techniques will provide unprecedented quantitative information on the micro-dynamics of blood cells and the impact of micro-geometry and flow patterns on thrombus initiation. PUBLIC HEALTH RELEVANCE: This proposal seeks to develop multiscale computational models of blood flow in specific regions of cardiovascular prostheses (heart valves, stents, ventricular assist devices) that are implicated in initiation of potentially dangerous thrombi. By advancing the understanding of and the ability to model the mechanics of blood cells under thrombogenic conditions, the proposed work will not only further our understanding of the pathology, but also develop predictive capabilities that can be used in designing safer prostheses.
描述(由申请人提供):将开发一个多尺度模型,以物理上准确的方式描述血液在狭窄几何形状中流动的动力学。这项研究很重要,因为在心血管假体(心脏瓣膜、支架和心室辅助装置)中,这种狭窄的几何结构(狭窄的渗漏间隙、铰链)是高流体剪应力可能导致血小板损伤的位置;血小板的激活和碰撞随后可能触发聚集和随后的血栓形成。这一提议背后的关键思想是,导致血栓形成的现象本质上是多尺度的。设备的尺度是~厘米,而狭窄的几何图形是~100微米宽,血细胞的大小是微米量级。流经100微米缝隙的血液不能被视为均质液体,血小板不能被视为被动点粒子。事实上,较大、可变形且数量相对较多的红细胞在血小板的机制中起着至关重要的作用。因此,一个物理上正确的剪切诱导血小板激活(SIPA)模型必须考虑血细胞的动力学、流动几何和血浆流动。为了更好地理解导致SIPA的微尺度相互作用,并指导更好的假体设计,通过收缩和扭曲的微几何对血流进行准确的计算建模将是非常有用的。建模的挑战在于,即使在狭窄的微观几何结构中,也有数百万个血细胞,因此,目前还不能很好地进行三维计算。因此,所提出的多尺度模型:(1)将是二维的;(2)将红细胞和血小板的全分辨微尺度模型与粗粒度的中观尺度模型相结合,以实现对大量(~104)细胞的跟踪。为了确保物理有效性,模型预测(例如细胞轨迹、细胞-细胞相互作用和流场特性)将与串联式微粒子图像测速(m-PIV)实验进行比较。此外,将在m-PIV可视化中跟踪血小板,并将使用生物分析来确定血小板的激活和聚集水平。通过计算和实验的紧密结合,我们试图获得:(1)血细胞微观力学的清晰图景和(2)局部切应力和切变梯度之间的定量关系,以及血小板显示出标志血栓形成的信号的趋势。这项工作极具挑战性,它将通过以下方式推动最先进的工作:(1)计算浸入血流中的大量细胞的动力学;(2)设计将信息从完全分辨的微尺度计算转换到粗粒度中尺度计算的技术;(3)密切耦合实验和计算研究,以了解微尺度动力学;以及(4)发展执行广泛应用于各种生物医学系统的真正大规模并行计算的能力。这些前沿技术将提供关于血细胞微观动力学以及微观几何和流动模式对血栓形成的影响的前所未有的定量信息。 公共卫生相关性:该提案旨在开发与潜在危险血栓的启动有关的心血管假体(心脏瓣膜、支架、心室辅助装置)特定区域的血液流动的多尺度计算模型。通过提高对血栓形成条件下血细胞机制的理解和建模能力,拟议的工作不仅将加深我们对病理的理解,还将发展可用于设计更安全的假体的预测能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Holavanahalli S UDAYKUMAR其他文献

Holavanahalli S UDAYKUMAR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Holavanahalli S UDAYKUMAR', 18)}}的其他基金

Multiscale Modeling of Thrombus Initiation in Cardiovascular Prostheses
心血管假体中血栓引发的多尺度建模
  • 批准号:
    8030907
  • 财政年份:
    2011
  • 资助金额:
    $ 26.71万
  • 项目类别:

相似海外基金

Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
  • 批准号:
    10100360
  • 财政年份:
    2024
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
  • 批准号:
    24K04974
  • 财政年份:
    2024
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
  • 批准号:
    2312319
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
  • 批准号:
    23K01686
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
  • 批准号:
    23K01692
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
  • 批准号:
    23K01695
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
  • 批准号:
    23K01713
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
  • 批准号:
    23K01715
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 26.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了