Protein Microcharacterization
蛋白质微观表征
基本信息
- 批准号:8554148
- 负责人:
- 金额:$ 74.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAffinityAllergensArginineArrhythmiaBindingCardiac DeathCell physiologyCellsCellular StressChromatinCodeCollaborationsComplexCongenital Heart DefectsConsensusConsumptionCore FacilityCoupledDNA RepairDNA biosynthesisDataDefectDetectionDiseaseEnergy MetabolismEthersFailureFamily memberFeedbackFlagellaGTP-Binding ProteinsGene ExpressionGene Expression RegulationGenesGerm CellsGlucocorticoid ReceptorGlucocorticoidsGlucoseGlyceraldehyde-3-Phosphate DehydrogenasesGlycolysisHandHistidineHistocompatibility TestingHomeostasisHormonesHumanImmunoassayInositolIntramural ResearchIon ChannelIsoenzymesLabelLaboratoriesLactate DehydrogenaseLeadLinkLipidsLondonMaintenanceMale InfertilityMass Spectrum AnalysisMediatingMembraneMetabolic DiseasesModificationMolecularMolecular WeightMonitorMutationNADHNational Institute of Environmental Health SciencesNuclear Magnetic ResonanceNuclear ReceptorsP-SelectinPeanuts - dietaryPeptidesPhosphorylationPhosphorylation SitePhosphotransferasesPost-Translational Modification SitePost-Translational Protein ProcessingProcessPromoter RegionsProtein BindingProtein CProtein IsoformsProtein Kinase CProteinsPublishingPyruvateRecoveryResearchResearch PersonnelResidual stateResourcesRoleSamplingScientistServicesSignal TransductionSignaling ProteinSingle Nucleotide PolymorphismSiteSodiumStimulusStressSudden DeathSurfaceTechniquesTestingTimeWorkbasecell motilitycofactordensitygenetic manipulationgenome-widehuman MAPK14 proteininhibitor/antagonistmutantpromoterprotein expressionresponsesensorsperm cellsperm functionstressor
项目摘要
A variety of service and collaborative projects in protein characterization have been or are being carried out with the Protein Microcharacterization Core Facility (PMCF) with approximately 6000 samples analyzed from 57 scientists representing 29 principle investigators from 8 laboratory branches.
One large effort is in support of the Protein Expression Core Facility (PECF) and Dr. Bob Petrovich. The Role of the PMCF is to confirm gene expression at the protein level prior to the PECF handing materials over to their users.
Other unpublished projects that are still ongoing include:
Identification of binding partners and sites of post-translational modifications (PTMs) on lipid and inositol kinases - Steve Shears
Identification and quantitation of lipidation on G-proteins C Lutz Birnbaumer
Identification of binding partners and post-translational modification of proteins that may be involved in DNA replication and repair - Sam Wilson
Identification of proteins in the BAF complexes under a variety of tissue types and/or conditions - Trevor Archer
P-selectin interaction partners and changes in phosphoproteome upon treatment C Steve Akiyama
Glis family members modifications and binding partners C Anton Jetten
Characterization of the PTMs of peanut allergens before and after processing (roasting) C Geoffrey Mueller and Bob London
The core also is performing value added research in affinity techniques (GFP-based enrichment) to aid in protein, protein binding partner, and PTM identifications.
Other recently published projects or projects in press include:
LDHC: Germ cell-specific lactate dehydrogenase C gene (Ldhc) leads to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC. -Mitch Eddy
GR: Glucocorticoids are stress hormones that maintain homeostasis through gene regulation mediated by nuclear receptors. We have discovered that other cellular stressors are integrated with glucocorticoid signaling through a new hormone-independent phosphorylation site, Ser134, on the human glucocorticoid receptor (GR). Ser134 phosphorylation is induced by a variety of stress-activating stimuli in a p38 mitogen-activated protein kinase (MAPK)-dependent manner. Cells expressing a mutant glucocorticoid receptor incapable of phosphorylation at Ser134 (S134A-GR) had significantly altered hormone-dependent genome-wide transcriptional responses and associated hormone-mediated cellular functions. The phosphorylation of Ser134 significantly increased the association of the GR with the zeta isoform of the 14-3-3 class of signaling proteins (14-3-3zeta) on chromatin promoter regions, resulting in a blunted hormone-dependent transcriptional response of select genes. These data argue that the phosphorylation of Ser134 acts as a molecular sensor on the GR, monitoring the level of cellular stress to redirect glucocorticoid-regulated signaling through altered 14-3-3zeta cofactor binding and promoter recruitment. This posttranslational modification allows prior cellular stress signals to dictate the transcriptional response to glucocorticoids. C John Cidlowski
Kv11.1: Mutations that inhibit Kv11.1 ion channel activity contribute to abnormalities of cardiac repolarization that can lead to long QT2 (LQT2) cardiac arrhythmias and sudden death. However, for most of these mutations, nothing is known about the molecular mechanism linking Kv11.1 malfunction to cardiac death. We have previously demonstrated that disease-related mutations that create consensus sites for kinases on ion channels can dramatically change ion channel activity. Here, we show that a LQT2-associated mutation can inhibit Kv11.1 ion channel activity by perturbing a consensus site for the Ser/Thr protein kinase C (PKC). We first reveal by mass spectrometry analysis that Ser890 of the Kv11.1 ion channel is phosphorylated. Then, we demonstrate by a phospho-detection immunoassay combined with genetic manipulation that PKC phosphorylates Ser890. Furthermore, we show that Ser890 phosphorylation is associated with an increase in Kv11.1 membrane density with alteration of recovery from inactivation. In addition, a newly discovered and as yet uncharacterized LQT2-associated nonsynonymous single nucleotide polymorphism 2660 GA within the human ether--go-go-related gene 1 coding sequence, which replaces arginine 887 with a histidine residue (R887H), strongly inhibits PKC-dependent phosphorylation of residue Ser890 on Kv11.1, and ultimately inhibits surface expression and current density. Taken together, our data provide a functional link between this channel mutation and LQT2. C Saverio Genitile (work previously performed by the PMCF in collaboration with Dave Armstrong)
Additional projects that have required more than negligible resources include efforts performed with the Armstrong, Blackshear, Hall, Hu, Fessler, J. Mason, and R.S. Williams laboratories.
蛋白质微表征核心设施(PMCF)已经或正在开展蛋白质表征方面的各种服务和合作项目,分析了来自8个实验室分支的57名科学家代表29名主要研究人员的约6000份样品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Williams其他文献
Jason Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Williams', 18)}}的其他基金
Determining the role of Pcdh10a in zebrafish migratory neural crest cells
确定 Pcdh10a 在斑马鱼迁移神经嵴细胞中的作用
- 批准号:
9269183 - 财政年份:2015
- 资助金额:
$ 74.79万 - 项目类别:
Methods to Compare Mechanisms of Action in Substance Use Programs
比较药物使用计划中作用机制的方法
- 批准号:
8210920 - 财政年份:2011
- 资助金额:
$ 74.79万 - 项目类别:
Methods to Compare Mechanisms of Action in Substance Use Programs
比较药物使用计划中作用机制的方法
- 批准号:
8044943 - 财政年份:2011
- 资助金额:
$ 74.79万 - 项目类别:
The effect of oxidative stress on muscle damage and functional senesence.
氧化应激对肌肉损伤和功能衰老的影响。
- 批准号:
7497989 - 财政年份:2007
- 资助金额:
$ 74.79万 - 项目类别:
The effect of oxidative stress on muscle damage and functional senesence.
氧化应激对肌肉损伤和功能衰老的影响。
- 批准号:
7276332 - 财政年份:2007
- 资助金额:
$ 74.79万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 74.79万 - 项目类别:
Continuing Grant














{{item.name}}会员




