Antibiotic Spectrum Scoring to Measure Hospital-Level Antibiotic De-escalation
用于衡量医院级别抗生素降级的抗生素谱评分
基本信息
- 批准号:8232657
- 负责人:
- 金额:$ 36.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Admission activityAlgorithmsAntibiotic ResistanceAntibiotic TherapyAntibioticsBar CodesCalibrationCharacteristicsCollectionComputerized Medical RecordDataDevelopmentEvaluationExpert OpinionGoalsGuidelinesHealthHealthcareHospitalsInfectionInpatientsInvestigationJudgmentLogistic ModelsMeasuresMedical centerMethodsMetricModelingOutputPatientsPharmaceutical PreparationsPharmacy facilityPhysiciansPneumoniaPolicy MakerPractice GuidelinesProbabilityProcessRegimenRelative (related person)ResearchResearch PersonnelSystemTreatment ProtocolsValidationVeteransantimicrobialbaseclinical practicecohortimprovedprevent
项目摘要
DESCRIPTION (provided by applicant): The use of early, aggressive broad-spectrum antibiotic therapy is common in hospitalized patients. Antibiotic de-escalation broadly refers to the discontinuation of antibiotics that are providing a spectrum of activity greater than necessary, or switching to narrower spectrum therapy once a patient is stable. Despite endorsement of antibiotic de-escalation by practice guidelines, limited data characterize the application of antibiotic de-escalation in practice. Furthermore, researchers have subjectively measured antibiotic de-escalation, which has prevented comparison of de-escalation rates between hospitals, and hindered evaluation of factors that may explain inter-hospital variability in de-escalation rates. Proposal aims include: 1) development and validation of a metric that characterizes the relative bacterial spectrum of antibiotics which can be used to measure antibiotic de-escalation; 2) application of the de- escalation metric to a cohort of veterans with health care associated pneumonia (HCAP) allowing comparison of antibiotic de-escalation rates between hospitals; and 3) identification of factors that explain inter-hospital variability in antibiotic de-escalation rates. In aim 1 a Delphi process utilizing a national pool of pharmacy and physician experts who practice antibiotic de- escalation will: a) develop a spectrum scoring metric to measure spectrum of antibiotic activity; and b) define antibiotic de-escalation according to criteria based on the scoring metric. The Delphi process output will be applied to develop a rule to classify antibiotic de-escalation status in electronic medical records-based antibiotic administration data. Internal validity will be assessed and calibration of the de-escalation rule to optimize the prediction of expert opinion will be accomplished by comparing de-escalation judgments of clinicians to rule based de- escalation. In aim 2, the antibiotic de-escalation rule will be applied to a retrospective cohort of patients admitted with health care associated pneumonia (HCAP) in 124 VAMC inpatient facilities nationwide. Antibiotic de-escalation rates will be expressed at the hospital level, stratified based on facility characteristics such as size and complexity level. In aim 3, a mixed- effects multivariable logistic model of antibiotic de-escalation probability will be developed to better understand the variability in de-escalation rates between hospitals. Adjusting for covariates selected in the validated model will allow associations between antibiotic de- escalation and bacterial culturing rates to be evaluated. The proposed research has significant potential to improve health by providing a basis for understanding relationships between bacterial spectrum, culturing practices, and treatment decisions such as antibiotic de-escalation.
PUBLIC HEALTH RELEVANCE: Antibiotic de-escalation refers to the discontinuation of antibiotics that are providing a spectrum of bacterial activity greater than necessary to prevent the development of antibiotic resistance. This study seeks to develop a method for determining if antibiotic de-escalation has been practiced, measuring antibiotic de-escalation rates between hospitals, and determining factors that positively influence antibiotic de-escalation. The proposed research has significant potential to improve health by providing a basis for understanding relationships influencing antibiotic de- escalation practices.
描述(由申请人提供):住院患者普遍使用早期、积极的广谱抗生素治疗。抗生素降级广义上是指停止使用提供超过必要活性光谱的抗生素,或在患者病情稳定后改用更窄的光谱治疗。尽管实践指南支持抗生素降级,但有限的数据表征了抗生素降级在实践中的应用。此外,研究人员主观地测量了抗生素降级率,这阻止了医院之间降级率的比较,并阻碍了对可能解释医院间降级率差异的因素的评估。提案的目的包括:1)开发和验证可用于衡量抗生素降级的抗生素相对细菌谱的指标;2)将降级指标应用于一组患有医疗保健相关肺炎(HCAP)的退伍军人,从而能够比较不同医院之间的抗生素降级率;以及3)确定解释医院间抗生素降级率差异的因素。在目标1中,利用实践抗生素降级的国家药房和医生专家库的德尔福程序将:a)开发一个光谱评分指标来衡量抗生素活性的频谱;以及b)根据基于评分指标的标准来定义抗生素降级。Delphi过程的输出将被应用于开发一种规则,以在基于电子病历的抗生素给药数据中对抗生素降级状态进行分类。将评估内部有效性,并将通过比较临床医生的降级判断与基于规则的降级来完成降级规则的校准,以优化专家意见的预测。在目标2中,抗生素降级规则将适用于全国124个VAMC住院机构中入院的卫生保健相关肺炎(HCAP)患者的回顾队列。抗生素降级率将在医院一级表达,根据设施特征(如规模和复杂程度)进行分层。在目标3中,将开发抗生素降级概率的混合效应多变量Logistic模型,以更好地理解医院之间降级率的变异性。对验证模型中选择的协变量进行调整将允许评估抗生素降级和细菌培养速率之间的关联。拟议的研究为理解细菌谱、培养实践和抗生素降级等治疗决策之间的关系提供了一个基础,从而具有改善健康的巨大潜力。
公共卫生相关性:抗生素降级是指停止使用抗生素,这些抗生素提供的细菌活性超过了防止抗生素耐药性发展所必需的范围。这项研究试图开发一种方法来确定抗生素降级是否已经实施,测量医院之间的抗生素降级率,并确定积极影响抗生素降级的因素。拟议的研究为了解影响抗生素降级做法的关系提供了基础,从而具有改善健康的巨大潜力。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of an antibiotic spectrum score based on veterans affairs culture and susceptibility data for the purpose of measuring antibiotic de-escalation: a modified Delphi approach.
- DOI:10.1086/677633
- 发表时间:2014-09
- 期刊:
- 影响因子:4.5
- 作者:Madaras-Kelly K;Jones M;Remington R;Hill N;Huttner B;Samore M
- 通讯作者:Samore M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl J. Madaras-Kelly其他文献
Karl J. Madaras-Kelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl J. Madaras-Kelly', 18)}}的其他基金
Etiology, Epidemiology, and Clinical Outcomes of Health Care Associated Pneumonia
医疗保健相关肺炎的病因学、流行病学和临床结果
- 批准号:
7532576 - 财政年份:2008
- 资助金额:
$ 36.51万 - 项目类别:
Etiology, Epidemiology, and Clinical Outcomes of Health Care Associated Pneumonia
医疗保健相关肺炎的病因学、流行病学和临床结果
- 批准号:
7640772 - 财政年份:2008
- 资助金额:
$ 36.51万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Continuing Grant