Threading transmembrane protein structures: G protein-coupled receptor case study

线程跨膜蛋白结构:G 蛋白偶联受体案例研究

基本信息

  • 批准号:
    8281460
  • 负责人:
  • 金额:
    $ 1.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-10-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The purpose of this proposed study is to develop and validate threading framework for accurately predicting full-length helical trans-membrane proteins; then apply these algorithms to predict the structures of human G-protein coupled receptor (GPCR) proteins and their spliced variants. Trans-membrane proteins are very important aspect of human biological function, they serve critical roles in cellular processes such as respiration, signal transduction, cell trafficking, and transport of compounds and ions across cellular membranes. Dysfunctions in some trans-membrane proteins have been associated with diseases such as Alzheimer¿s and diabetes [1, 2]. They are also a target for more than 50% of pharmaceutical drugs. To better understand the mechanism of their function, which in turn help better understand the mechanism of their associated diseases, the three dimensional (3D) structure must be determined. This research seeks to provide a threading framework for predict the 3D structure of membrane proteins, using GPCR as case study, through the technique called threading. Threading is when a query sequence is aligned to all representative structures energetically. To achieve the above aims, a threading-based framework for predicting the backbone structures of alpha helical trans-membrane proteins will be developed, then adapt exiting structural refinement tools to obtain full-atom structures. Next, the threading framework obtained and refined in step one and two will be applied to the about 701 human rhodopsin GPCR and its spliced variants.
项目总结/摘要 本研究的目的是开发和验证准确预测全长螺旋跨膜蛋白的线程框架,然后应用这些算法预测人类G蛋白偶联受体(GPCR)蛋白及其剪接变体的结构。 跨膜蛋白是人体生物学功能的重要组成部分,在呼吸、信号转导、细胞运输、跨膜转运等细胞过程中发挥着重要作用。一些跨膜蛋白的功能障碍与阿尔茨海默病和糖尿病等疾病有关[1,2]。它们也是超过50%的药物的目标。为了更好地理解其功能的机制,这反过来又有助于更好地理解其相关疾病的机制,必须确定三维(3D)结构。本研究以GPCR为例,通过线程技术,为膜蛋白的三维结构预测提供了一个线程框架。线程化是指将查询序列与所有代表性结构进行能量比对。 为了实现上述目标,将开发一个基于线程的框架来预测α螺旋跨膜蛋白的骨架结构,然后调整现有的结构精修工具以获得全原子结构。接下来,将在步骤一和步骤二中获得和精制的穿线框架应用于约701个人视紫红质GPCR及其剪接变体。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional understanding of the diverse exon-intron structures of human GPCR genes.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dorothy A. Hammond其他文献

Dorothy A. Hammond的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dorothy A. Hammond', 18)}}的其他基金

Threading transmembrane protein structures: G protein-coupled receptor case study
线程跨膜蛋白结构:G 蛋白偶联受体案例研究
  • 批准号:
    8102938
  • 财政年份:
    2010
  • 资助金额:
    $ 1.44万
  • 项目类别:
Threading transmembrane protein structures: G protein-coupled receptor case study
线程跨膜蛋白结构:G 蛋白偶联受体案例研究
  • 批准号:
    7916974
  • 财政年份:
    2010
  • 资助金额:
    $ 1.44万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 1.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了