Phosphorylation networks regulated by energy stress in yeast
酵母中能量应激调节的磷酸化网络
基本信息
- 批准号:8481478
- 负责人:
- 金额:$ 32.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAnimal ModelAutophagocytosisBiological AssayCatabolismCell ExtractsCell physiologyCellsClinicalComplexConsumptionCultured CellsDataDevelopmentDiabetes MellitusDiseaseDrug usageEnergy MetabolismEngineeringEnzymesEukaryotaEventGenesGeneticGlycerol-3-Phosphate DehydrogenaseGlycerolipid Metabolism PathwayGoalsHeart DiseasesHomeostasisHumanIn VitroInsulin ResistanceMalignant NeoplasmsMammalian CellMammalsMass Spectrum AnalysisMediatingMetabolismMethodologyMethodsMutationNon-Insulin-Dependent Diabetes MellitusNutrientObesityOrthologous GenePathway interactionsPharmaceutical PreparationsPhenotypePhosphopeptidesPhosphorylationPhosphorylation SitePhosphotransferasesProcessProteinsRegulationRelative (related person)ResearchRoleShotgunsSignal TransductionSiteStressStructureStudy modelsSubstrate SpecificityWorkYeastsbasecandidate identificationchemical geneticsdesignenergy balancein vivoinsightmutantnovelpreferencepublic health relevanceresponsesensortool
项目摘要
DESCRIPTION (provided by applicant): Eukaryotes have evolved mechanisms for maintaining energy homeostasis in the face of changes in nutrient availability and energy expenditure. AMP-activated protein kinase (AMPK) is a conserved sensor of cellular energy status, acting as a critical node in signaling networks controlling cellular metabolism. Suppression of AMPK activity has been implicated in insulin resistance, obesity, cancer, and heart disease, and a major clinical drug for treating type II diabetes is an AMPK activator. AMPK is activated by cellular energy stress, and its subsequent phosphorylation of multiple target proteins serves to increase catabolism and decrease energy consumption to maintain energy balance. While several key phosphorylation targets of AMPK are known, it is likely that there are many additional substrates that remain to be discovered. These studies will focus on Snf1, the yeast ortholog of AMPK, which has long served as an important model for studying AMPK regulation and function. We propose to identify a large number of novel Snf1 substrates using emerging targeted phosphoproteomics methodology. Through motif-based analysis of shotgun phosphoproteomics data, we have identified approximately 100 potential substrates of Snf1. We will develop assays for relative quantification of the phosphorylation state of these substrates in
cell extracts using a targeted mass spectrometry approach. Sites that decrease in abundance following chemical-genetic inhibition of Snf1 are considered to be dependent on the kinase in vivo. We will then use a novel genetic method to establish which sites are directly phosphorylated by Snf1. We have generated a Snf1 mutant by structure-based design that exchanges its phosphoacceptor residue preference from Ser to Thr. By introducing compensating mutations at the phosphorylation site of substrates, we can restore phosphorylation by mutant Snf1. The ability to generate functional re- engineered kinase-substrate pairs in vivo provides strong evidence of direct phosphorylation. We will characterize Snf1-dependent phosphorylation networks controlling glycerolipid metabolism and autophagy through detailed functional analysis of novel direct substrates. Substrates predicted to be conserved to humans will be examined for regulation by AMPK in mammalian cells. These studies will provide fundamental insight into mechanisms by which Snf1 and human AMPK control cellular metabolism in response to changes in nutrient availability. In addition, the methodology used for these studies should be applicable other kinases as well, providing general tools for elucidating phosphorylation-dependent signaling networks in eukaryotes.
描述(申请人提供):真核生物已经进化出在营养供应和能量消耗发生变化的情况下维持能量平衡的机制。AMPK是一种保守的细胞能量状态感受器,在控制细胞代谢的信号网络中起着关键作用。抑制AMPK活性与胰岛素抵抗、肥胖、癌症和心脏病有关,治疗II型糖尿病的主要临床药物是AMPK激动剂。AMPK是由细胞能量应激激活的,其随后的多个靶蛋白的磷酸化有助于增加分解代谢,降低能量消耗,以维持能量平衡。虽然AMPK的几个关键的磷酸化靶点是已知的,但很可能还有许多其他底物有待发现。这些研究将集中在酵母AMPK的同源基因Snf1,它长期以来一直是研究AMPK调控和功能的重要模型。我们建议使用新兴的靶向磷酸蛋白质组学方法来鉴定大量新的Snf1底物。通过对鸟枪磷蛋白质组数据的基于基序的分析,我们已经确定了大约100个可能的Snf1底物。我们将开发相对量化这些底物的磷酸化状态的分析方法
使用靶向质谱学方法提取细胞。在化学遗传抑制Snf1之后,丰度降低的位点被认为依赖于体内的激酶。然后,我们将使用一种新的遗传方法来确定哪些位点直接被Snf1磷酸化。我们已经通过基于结构的设计产生了一个Snf1突变体,它将其磷受体残基的偏好从Ser转换为Thr。通过在底物的磷酸化位点引入补偿突变,我们可以恢复突变的Snf1的磷酸化。在体内产生功能性重组的激酶-底物对的能力为直接磷酸化提供了强有力的证据。我们将通过对新的直接底物的详细功能分析来表征控制甘油脂代谢和自噬的依赖于Snf1的磷酸化网络。预计对人类保守的底物将在哺乳动物细胞中受到AMPK的调节。这些研究将为Snf1和人类AMPK控制细胞代谢以响应营养供应变化的机制提供基本的见解。此外,这些研究所使用的方法也应该适用于其他激酶,为阐明真核生物中依赖磷酸化的信号网络提供通用工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENJAMIN E TURK其他文献
BENJAMIN E TURK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENJAMIN E TURK', 18)}}的其他基金
Defining protein interaction networks involving the atypical MAP kinases ERK4 and ERK7
定义涉及非典型 MAP 激酶 ERK4 和 ERK7 的蛋白质相互作用网络
- 批准号:
10451068 - 财政年份:2022
- 资助金额:
$ 32.46万 - 项目类别:
Mechanisms of selective signaling in MAP kinase phosphorylation networks
MAP 激酶磷酸化网络中的选择性信号传导机制
- 批准号:
10624431 - 财政年份:2020
- 资助金额:
$ 32.46万 - 项目类别:
Mechanisms of selective signaling in MAP kinase phosphorylation networks
MAP 激酶磷酸化网络中的选择性信号传导机制
- 批准号:
10402942 - 财政年份:2020
- 资助金额:
$ 32.46万 - 项目类别:
Mechanisms of selective signaling in MAP kinase phosphorylation networks
MAP 激酶磷酸化网络中的选择性信号传导机制
- 批准号:
10229600 - 财政年份:2020
- 资助金额:
$ 32.46万 - 项目类别:
Phosphorylation networks regulated by energy stress in yeast
酵母中能量应激调节的磷酸化网络
- 批准号:
9059729 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
8579092 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
9282656 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Phosphorylation networks regulated by energy stress in yeast
酵母中能量应激调节的磷酸化网络
- 批准号:
8666011 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
8860197 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Modeling human phosphorylation networks through kinome-wide profiling
通过全激酶组分析对人类磷酸化网络进行建模
- 批准号:
8731945 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
相似海外基金
Pharmacological targeting of AMP-activated protein kinase for immune cell regulation in Type 1 Diabetes
AMP 激活蛋白激酶对 1 型糖尿病免疫细胞调节的药理学靶向
- 批准号:
2867610 - 财政年份:2023
- 资助金额:
$ 32.46万 - 项目类别:
Studentship
Establishing AMP-activated protein kinase as a regulator of adipose stem cell plasticity and function in health and disease
建立 AMP 激活蛋白激酶作为脂肪干细胞可塑性和健康和疾病功能的调节剂
- 批准号:
BB/W009633/1 - 财政年份:2022
- 资助金额:
$ 32.46万 - 项目类别:
Fellowship
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2021
- 资助金额:
$ 32.46万 - 项目类别:
Postdoctoral Fellowships
Metabolic control of integrin membrane traffic by AMP-activated protein kinase controls cell migration.
AMP 激活的蛋白激酶对整合素膜运输的代谢控制控制着细胞迁移。
- 批准号:
459043 - 财政年份:2021
- 资助金额:
$ 32.46万 - 项目类别:
Studentship Programs
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2020
- 资助金额:
$ 32.46万 - 项目类别:
Postdoctoral Fellowships
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10561642 - 财政年份:2019
- 资助金额:
$ 32.46万 - 项目类别:
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2019
- 资助金额:
$ 32.46万 - 项目类别:
Postdoctoral Fellowships
Treating Diabetic Inflammation using AMP-Activated Protein Kinase Activators
使用 AMP 激活的蛋白激酶激活剂治疗糖尿病炎症
- 批准号:
2243045 - 财政年份:2019
- 资助金额:
$ 32.46万 - 项目类别:
Studentship
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10359032 - 财政年份:2019
- 资助金额:
$ 32.46万 - 项目类别:
Investigating the therapeutic potential of AMP-activated protein kinase in myotonic dystrophy type 1
研究 AMP 激活蛋白激酶在 1 型强直性肌营养不良中的治疗潜力
- 批准号:
428988 - 财政年份:2019
- 资助金额:
$ 32.46万 - 项目类别:
Studentship Programs