Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
基本信息
- 批准号:8390478
- 负责人:
- 金额:$ 3.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-01 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdenosineAffinityAllosteric RegulationAmidesAmidohydrolasesAmino AcidsAmino SugarsAmmoniaAntibiotic TherapyBasic ScienceBindingBinding SitesBiological ProcessC-terminalCTP synthaseCatalysisCoenzymesComplexCytosineEnzymesFamilyFoundationsGTP BindingGlutaminaseGlutamineGoalsGuanosine TriphosphateHomologous GeneHydrolysisIndividualIonsLeadLigaseLocationMetalsModelingMultienzyme ComplexesMutagenesisMutationN-terminalNitrilaseNitrogenOrganismPathway interactionsPlayPositioning AttributeProteinsPurine NucleotidesPyridoxal PhosphatePyrimidine NucleotidesRegulationRoleSourceStructureSystemTailTransfer RNATriad Acrylic ResinVariantactivation productamidasecancer therapydivalent metalinorganic phosphateinsightinterestmutantpreventprotein complexpublic health relevanceribose-5-phosphatesmall moleculetripolyphosphate
项目摘要
DESCRIPTION (provided by applicant): The glutamine amidotranferases (GATs) are responsible for the hydrolysis of glutamine to produce ammonia for a diverse array of biosynthetic pathways. Thus far, there are 16 known GATs, all of which are modular and classified by their glutaminase domains. These domains are from four different ancestral groups: N-terminal nucleophile GATs (Ntn), Triad GATs, amidase GAT and Nitrilase GAT. In addition to their glutaminase domains, GATs have a second active site within their synthase domains. In this active site the ammonia produced from the glutaminase domain is combined with acceptor substrates for the synthesis of amino acids, purine and pyrimidine nucleotides, amino sugars and coenzymes. The progression of catalysis from the glutaminase domain to the synthase domain is highly regulated by substrate binding and the mechanism by which this regulation is achieved is GAT dependent. Given their importance in biosynthetic pathways, they are targets for potential antibiotic and anticancer therapies. Furthermore, they provide a model to study multi-step catalysis with a hierarchy of regulation. In this study we are interested in investigating the structural changes induced by either binding of the acceptor substrates or binding of a non-substrate small molecule and which specific residues propagate the conformational changes that are essential to the mechanism. Although all GATs share the ability to hydrolyze glutamine, their synthetase domains vary. This variation has lead to variations in how each GAT responds to the binding of their substrates. To expose which residues are critical to GATs from different ancestral groups three different GATs (pyridoxial 5'phosphate synthase from G. stearothemophilus, and GatCAB and cytosine triphosphate synthetase from A. aeolius) will be co-crystallized with their substrates in order to capture snapshots of their mechanisms. In aim 1 an inactive PLP synthase mutant will be co-crystallized with its substrates. It is anticipated that this inactivating mutation will order the C-terminal tail of the PdxS subunit. A region that is essential to the complex's function. This will demonstrate how multi-subunit GATs communicate between subunits. Aim 2 will focus on the role of the two divalent metals bound within GatCAB and how these metals are used to spatially orient all its substrates. Aim 3 will identify why CTP synthetase uses a small molecule, GTP, instead of its substrates to induce conformational changes that enhance activity. CTP synthetase from A. aeolius is unique compared with its homologs from other organisms due to its significantly higher affinity for GTP. Understanding the mechanism behind these complex enzymes will provide a paradigm for structural studies for other multi-modular systems.
描述(由申请人提供):谷氨酰胺氨基转移酶(GATs)负责谷氨酰胺水解产生氨,用于多种生物合成途径。到目前为止,已知有16种GATs,它们都是模块化的,并根据其谷氨酰胺酶结构域进行分类。这些结构域来自四个不同的祖先群:n端亲核GAT (Ntn),三联体GAT,酰胺酶GAT和硝化酶GAT。除了它们的谷氨酰胺酶结构域外,GATs在它们的合成酶结构域内还有第二个活性位点。在这个活性位点,由谷氨酰胺酶结构域产生的氨与受体底物结合,合成氨基酸、嘌呤和嘧啶核苷酸、氨基糖和辅酶。从谷氨酰胺酶结构域到合成酶结构域的催化过程受到底物结合的高度调节,而这种调节的实现机制依赖于GAT。鉴于它们在生物合成途径中的重要性,它们是潜在的抗生素和抗癌治疗的靶点。此外,他们还提供了一个模型来研究具有层次结构的多步催化。在这项研究中,我们感兴趣的是研究受体底物结合或非底物小分子结合引起的结构变化,以及哪些特定残基传播对机制至关重要的构象变化。虽然所有GATs都具有水解谷氨酰胺的能力,但它们的合成酶结构域各不相同。这种变异导致了每个GAT对其底物结合的反应方式的变化。为了揭示哪些残基对来自不同祖先群体的GATs至关重要,我们将三种不同的GATs(来自嗜硬脂嗜热葡萄球菌的pyridoxial 5'磷酸合成酶,以及来自风柳葡萄球菌的GatCAB和三磷酸胞嘧啶合成酶)与其底物共结晶,以捕捉其机制的片段。在目标1中,失活的PLP合酶突变体将与其底物共结晶。预计这种失活突变将使PdxS亚基的c端尾部有序。这个区域对建筑群的功能至关重要。这将演示多亚基GATs如何在亚基之间进行通信。目标2将侧重于GatCAB中结合的两种二价金属的作用,以及如何使用这些金属来对其所有底物进行空间定向。目的3将确定为什么CTP合成酶使用小分子GTP,而不是其底物来诱导增强活性的构象变化。与其他生物的同系物相比,风单胞菌的CTP合成酶是独特的,因为它对GTP具有更高的亲和力。了解这些复杂酶背后的机制将为其他多模块系统的结构研究提供一个范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amber Marie Smith其他文献
Amber Marie Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amber Marie Smith', 18)}}的其他基金
Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
- 批准号:
7910122 - 财政年份:2010
- 资助金额:
$ 3.32万 - 项目类别:
Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
- 批准号:
8211407 - 财政年份:2010
- 资助金额:
$ 3.32万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 3.32万 - 项目类别:
Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
- 批准号:
RGPIN-2019-06289 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 3.32万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




