Analytic Methods for HIV Treatment and Co-Factor Effects
HIV 治疗和辅助因素效应的分析方法
基本信息
- 批准号:8467661
- 负责人:
- 金额:$ 63.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-08-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAlgorithmsBackCCR5 geneCD4 Lymphocyte CountChildhoodClinicalCohort StudiesComputer softwareComputing MethodologiesConfidence IntervalsCox Proportional Hazards ModelsDataDatabasesDerivation procedureDevelopmentDiseaseDisease ProgressionEpidemicEpidemiologyEquationGoalsGraphHIVHighly Active Antiretroviral TherapyHospitalsInfectionInstructionInterventionInvestigationLeftMapsMarkov ChainsMethodologyMethodsMicrocomputersModelingNeedle SharingObservational StudyOutcomePatientsPersonsPharmaceutical PreparationsPhysiciansPrevalenceProtease InhibitorProtocols documentationPublic HealthRNARandomizedRandomized Controlled TrialsRecording of previous eventsRegimenResearch PersonnelResistanceRisk BehaviorsRisk FactorsSamplingSex BehaviorSolutionsStagingStochastic ProcessesStructural ModelsSurveysTestingTimeVaccinationValidationViralWomanWorkbasecase controlcofactorcohortcostdata modelingdesigndosagenovelrandomized trialresponsetheoriesuser-friendlyvaccine efficacy
项目摘要
The principal aim of this proposal is to further development of new methods for analyzing observational data
bases and randomized trials of HIV-infected persons and the application of these methods to data obtained
in randomized and observational studies in an attempt to help answer important open substantive questions
concerning the treatment and course of HlV-related disease. The proposed approaches are based either on
(i) the estimation of new classes of causal models which include structural nested models, marginal
structural models (MSMs), direct effect structural nested models, continuous time structural nested models,
and optimail regime structural models (SNMs). Many of the new methods are fundamentally "epidemiologic"
in that they require data on time-dependent confounding factors, that is, risk factors for outcomes that also
predict subsequent treatment with the drug or cofactor under study.
In particular, we plan to further develop optimal regime SNMs and dynamic MSMs to help detemnine the
optimal times to start HAART therapy and to change HAART regimens as a function of a subject's CD4
count, HIV RNA, clinical history, and, where available, results of genot^lc or phenotypic resistance testing.
Our methods will be developed with the goal of directing analyzes and reanalyzes, with collaborators, of data
from the HIV Causal Colioboration at HSPH . the Multicenler AIDS Cohort Study, The Women's Interagency
HIV Study, The Swiss HIV Cohort Study, The Study of The Consequences of Protease Inhibitor Era
(SCOPE), Pediatric Late Outcomes Protocol (PACTG 219) and the ALLRT study.
RELEVANCE (See instructions):
Observational methods are used to answer pressing causal questions that cannot be or have not yet been
studied in randomized trials. In particular we are developing methods that are the best available to determine
the optimal CD4 and HIV RNA levels at which to initiate HAAART therapy in HIV infected subjects and the
optimal time to change therapy once resistance to a initial HAART regime has developed.
这项建议的主要目的是进一步发展分析观测数据的新方法
艾滋病毒感染者的基础和随机试验,以及这些方法在获得的数据中的应用
在随机和观察性研究中,试图帮助回答重要的开放性实质性问题,
关于HIV相关疾病的治疗和病程。所提出的方法是基于
(i)一类新的因果模型的估计,包括结构嵌套模型,边际模型,
结构模型(MSM),直接效应结构嵌套模型,连续时间结构嵌套模型,
和最优机制结构模型(SNM)。许多新方法从根本上说是“流行病学”的
因为它们需要关于时间依赖性混杂因素的数据,即,结果的风险因素,
预测随后使用研究药物或辅因子的治疗。
特别是,我们计划进一步开发最佳制度的国家监测机制和动态的国家监测机制,以帮助确定
开始HAART治疗和改变HAART方案的最佳时间,作为受试者CD4的函数
计数、HIV RNA、临床病史,以及基因型或表型耐药检测结果(如果可用)。
我们的方法将与指导分析和再分析的目标,与合作者,数据的发展
来自HSPH的HIV因果共移植多人艾滋病队列研究,妇女跨部门
HIV研究,瑞士HIV队列研究,蛋白酶抑制剂时代的后果研究
(SCOPE)、儿科晚期结局方案(PACTG 219)和ALLRT研究。
相关性(参见说明):
观察的方法被用来回答紧迫的因果问题,不能或尚未
在随机试验中研究。特别是,我们正在开发最好的方法来确定
在HIV感染受试者中启动HAAART治疗的最佳CD4和HIV RNA水平,
一旦对初始HAART方案产生耐药性,则是改变治疗的最佳时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES M ROBINS其他文献
JAMES M ROBINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES M ROBINS', 18)}}的其他基金
ANALYTIC METHODS FOR HIV-TREATMENT AND COFACTOR EFFECTS
HIV 治疗和辅助因子效应的分析方法
- 批准号:
3147580 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
Analytical Methods/HIV Treatment and Co-factor Effects
分析方法/HIV 治疗和辅助因素效应
- 批准号:
7387337 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
ANALYTIC METHODS FOR HIV TREATMENT AND COFACTOR EFFECTS
HIV 治疗和辅助因子效应的分析方法
- 批准号:
2003767 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
ANALYTIC METHODS FOR HIV-TREATMENT AND COFACTOR EFFECTS
HIV 治疗和辅助因子效应的分析方法
- 批准号:
3147581 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
ANALYTIC METHODS FOR HIV TREATMENT AND COFACTOR EFFECTS
HIV 治疗和辅助因子效应的分析方法
- 批准号:
2067359 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
ANALYTIC METHODS FOR HIV TREATMENT AND COFACTOR EFFECTS
HIV 治疗和辅助因子效应的分析方法
- 批准号:
2886740 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
ANALYTIC METHODS FOR HIV TREATMENT AND COFACTOR EFFECTS
HIV 治疗和辅助因子效应的分析方法
- 批准号:
6170110 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
Analytical Methods/HIV Treatment and Co-factor Effects
分析方法/HIV 治疗和辅助因素效应
- 批准号:
7214735 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
Analytic Methods for HIV Treatment and Co-Factor Effects
HIV 治疗和辅助因素效应的分析方法
- 批准号:
7751972 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
Analytic Methods for HIV Treatment and Co-Factor Effects
HIV 治疗和辅助因素效应的分析方法
- 批准号:
8240047 - 财政年份:1992
- 资助金额:
$ 63.66万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 63.66万 - 项目类别:
Research Grant