Developing a whole-genome sequencing method for single human cells
开发单个人类细胞的全基因组测序方法
基本信息
- 批准号:8550031
- 负责人:
- 金额:$ 19.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-24 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBase PairingBiological PhenomenaBreast Cancer CellCancer PatientCancer cell lineCell Culture SystemCell Culture TechniquesCell LineCell LineageCellsCleaved cellClinicalCluster AnalysisCommunicable DiseasesComplexDNADNA LibraryDNA SequenceDataDefectDevelopmentDevelopmental BiologyDiagnosisEarly DiagnosisEvolutionFertilization in VitroFibroblastsGenetic HeterogeneityGenomeGenomicsGenotypeGoalsGrantHeterogeneityHumanImmune System DiseasesImmunologyInvestigationKnowledgeMalignant NeoplasmsMammalian CellMammary NeoplasmsMethodologyMethodsMicrobiologyMissionModalityModelingMorbidity - disease rateMutationNatureNeoplasm MetastasisNeurobiologyPatientsPoint MutationPolymerasePopulationPrimary NeoplasmPublic HealthReadingReagentReportingResearchResistanceResolutionSamplingSeedsSignal TransductionSolid NeoplasmSomatic MutationTechnologyTestingTissuesTn5 transposaseUnited States National Institutes of HealthValidationVariantWorkbasecancer cellcancer genomechemotherapycost effectivedevelopmental diseasegenome sequencinggenome-widehuman diseaseimprovedinnovationinterestmalignant breast neoplasmmortalityneoplastic cellnervous system disordernew technologynext generation sequencingnovelprogramsresearch studyresponsesingle cell analysistooltumortumor progression
项目摘要
DESCRIPTION (provided by applicant): Current genomic methods are limited to reporting an average signal from a complex population of cells because they require a large amount of input material. In complex tissues such as tumors, where genetic heterogeneity is common, important information may be lost. To address this problem, we propose to develop a whole-genome sequencing method that can obtain high-coverage (>80%) sequencing data from the genome of a single human cell. From this data we will identify the full spectrum of somatic mutations, including point mutations, indels, structural variants and copy number aberration that are present in the genome of a single cell. By comparing the genomes of multiple cells we can delineate clonal diversity and infer how tumor genomes evolve complex somatic mutations. To do this, we propose to develop an innovative method called Cell-Seq which combines minimal isothermal amplification with a Phi29 polymerase and a Tn5 transposase that can simultaneously cleave DNA fragments and add adapters for next-generation sequencing, starting with only a single cell. In aim 1 we will develop and optimize the Cell-Seq method. In aim 2 we will validate the method in two clonal cell cultures by comparing the genomes of single cells to million cell samples, to determine error rates and identify potential biases associated with the method. In aim 3 we will apply Cell-Seq to a human breast tumor sample and sequence the genomes of 10 single cells to investigate clonal diversity and genome evolution. We hypothesize that breast tumors are organized into one or more major clonal subpopulations that stably expand to form the tumor mass, not millions of diverse clones, as the prevailing model for tumor progression assumes. We expect that clustering analysis will show evidence for a few major groups, and that within each group genomic mutations will be highly similar. The proposed single-cell sequencing approach is innovative because it can fully resolve heterogeneity in complex populations of cells, whereas standard bulk genomic methods are limited to reporting an average signal. This research is significant because achieving these aims will improve our fundamental understanding of clonal diversity in human breast cancers, and our knowledge of how tumor genomes evolve complex somatic mutations. Our long-term goal is to use single-cell sequencing to study how single cells from human tumors seed metastases and evolve resistance to chemotherapy. Our work is directly aligned with the mission of the NIH to reduce mortality rates in breast cancer through the development of new modalities for early detection and diagnosing heterogeneity in tumors. Our work is also aligned with the goal of the SCAP to cure human diseases through the development of new single-cell genomic technologies. In addition to benefiting the study of cancer, we expect that our tools will have a broad positive impact on many other human diseases, including neurological disorders, immunological diseases, developmental defects and infectious disease.
描述(由申请人提供):当前的基因组方法仅限于报告来自复杂细胞群体的平均信号,因为它们需要大量的输入材料。在复杂的组织如肿瘤中,遗传异质性是常见的,重要的信息可能会丢失。为了解决这个问题,我们建议开发一种全基因组测序方法,该方法可以从单个人类细胞的基因组中获得高覆盖率(>80%)的测序数据。从这些数据中,我们将确定体细胞突变的全谱,包括单细胞基因组中存在的点突变,插入缺失,结构变异和拷贝数畸变。通过比较多个细胞的基因组,我们可以描绘克隆多样性,并推断肿瘤基因组如何演变复杂的体细胞突变。为此,我们建议开发一种名为Cell-Seq的创新方法,该方法将最小等温扩增与Phi 29聚合酶和Tn 5转座酶相结合,可以同时切割DNA片段并为下一代测序添加衔接子,仅从单个细胞开始。在目标1中,我们将开发和优化Cell-Seq方法。在目标2中,我们将通过比较单细胞与百万细胞样本的基因组,在两种克隆细胞培养物中验证该方法,以确定错误率并识别与该方法相关的潜在偏倚。在目标3中,我们将Cell-Seq应用于人类乳腺肿瘤样本,并对10个单细胞的基因组进行测序,以研究克隆多样性和基因组进化。我们假设乳腺肿瘤被组织成一个或多个主要的克隆亚群,这些亚群稳定地扩增形成肿瘤块,而不是像肿瘤进展的流行模型所假设的那样,有数百万个不同的克隆。我们期望聚类分析将显示几个主要群体的证据,并且在每个群体中基因组突变将高度相似。所提出的单细胞测序方法是创新的,因为它可以完全解决复杂细胞群体中的异质性,而标准的批量基因组方法仅限于报告平均信号。这项研究意义重大,因为实现这些目标将提高我们对人类乳腺癌克隆多样性的基本理解,以及我们对肿瘤基因组如何演变复杂体细胞突变的了解。我们的长期目标是使用单细胞测序来研究来自人类肿瘤的单细胞如何播种转移并进化出对化疗的抗性。我们的工作与NIH的使命直接一致,即通过开发早期检测和诊断肿瘤异质性的新模式来降低乳腺癌的死亡率。我们的工作也符合SCAP的目标,即通过开发新的单细胞基因组技术来治愈人类疾病。除了有利于癌症的研究外,我们预计我们的工具将对许多其他人类疾病产生广泛的积极影响,包括神经系统疾病,免疫性疾病,发育缺陷和传染病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Navin其他文献
Nicholas Navin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Navin', 18)}}的其他基金
INVESTIGATING TUMOR INITIATION AND INVASION IN PREMALIGNANT BREAST CANCER WITH SPATIAL SINGLE CELL GENOMICS
利用空间单细胞基因组学研究癌前乳腺癌的肿瘤发生和侵袭
- 批准号:
9797459 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
DELINEATING THE EVOLUTION AND ECOLOGY OF CHEMORESISTANCE IN BREAST CANCER WITH SINGLE CELL GENOMICS
用单细胞基因组学描绘乳腺癌化疗耐药性的进化和生态学
- 批准号:
10530618 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
DELINEATING THE EVOLUTION AND ECOLOGY OF CHEMORESISTANCE IN BREAST CANCER WITH SINGLE CELL GENOMICS
用单细胞基因组学描绘乳腺癌化疗耐药性的进化和生态学
- 批准号:
10058822 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
INVESTIGATING TUMOR INITIATION AND INVASION IN PREMALIGNANT BREAST CANCER WITH SPATIAL SINGLE CELL GENOMICS
利用空间单细胞基因组学研究癌前乳腺癌的肿瘤发生和侵袭
- 批准号:
10627906 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
DELINEATING THE EVOLUTION AND ECOLOGY OF CHEMORESISTANCE IN BREAST CANCER WITH SINGLE CELL GENOMICS
用单细胞基因组学描绘乳腺癌化疗耐药性的进化和生态学
- 批准号:
10310413 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
INVESTIGATING TUMOR INITIATION AND INVASION IN PREMALIGNANT BREAST CANCER WITH SPATIAL SINGLE CELL GENOMICS
利用空间单细胞基因组学研究癌前乳腺癌的肿瘤发生和侵袭
- 批准号:
10220904 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
INVESTIGATING TUMOR INITIATION AND INVASION IN PREMALIGNANT BREAST CANCER WITH SPATIAL SINGLE CELL GENOMICS
利用空间单细胞基因组学研究癌前乳腺癌的肿瘤发生和侵袭
- 批准号:
10407042 - 财政年份:2019
- 资助金额:
$ 19.16万 - 项目类别:
Developing a whole-genome sequencing method for single human cells
开发单个人类细胞的全基因组测序方法
- 批准号:
8413756 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
Single-Cell Sequencing of Breast Tumors to Investigate Genome Evolution
通过乳腺肿瘤单细胞测序研究基因组进化
- 批准号:
8657942 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
Single-Cell Sequencing of Breast Tumors to Investigate Genome Evolution
通过乳腺肿瘤单细胞测序研究基因组进化
- 批准号:
8510606 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
相似海外基金
Mapping long-range G-G base pairing interaction within the human genome
绘制人类基因组内长程 G-G 碱基配对相互作用图谱
- 批准号:
2887243 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Studentship
Structure and function of DNA polymerase lambda opposite DNA lesions which disrupt Watson-Crick base pairing
DNA 聚合酶 lambda 的结构和功能与破坏 Watson-Crick 碱基配对的 DNA 损伤相反
- 批准号:
10065004 - 财政年份:2017
- 资助金额:
$ 19.16万 - 项目类别:
Molecular basis of acceleration of base-pairing between sRNA and target mRNA by Hfq
Hfq加速sRNA与靶mRNA碱基配对的分子基础
- 批准号:
16K07259 - 财政年份:2016
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating mRNA-rRNA base pairing in translation initiation
研究翻译起始中的 mRNA-rRNA 碱基配对
- 批准号:
9171027 - 财政年份:2016
- 资助金额:
$ 19.16万 - 项目类别:
Expanding the natural DNA base-pairing alphabet: Small molecule mediated assembly of DNA nanomaterials with novel geometries
扩展天然 DNA 碱基配对字母表:小分子介导的具有新颖几何形状的 DNA 纳米材料的组装
- 批准号:
444512-2013 - 财政年份:2015
- 资助金额:
$ 19.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Expanding the natural DNA base-pairing alphabet: Small molecule mediated assembly of DNA nanomaterials with novel geometries
扩展天然 DNA 碱基配对字母表:小分子介导的具有新颖几何形状的 DNA 纳米材料的组装
- 批准号:
444512-2013 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Expanding the natural DNA base-pairing alphabet: Small molecule mediated assembly of DNA nanomaterials with novel geometries
扩展天然 DNA 碱基配对字母表:小分子介导的具有新颖几何形状的 DNA 纳米材料的组装
- 批准号:
444512-2013 - 财政年份:2013
- 资助金额:
$ 19.16万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effects of Vicinal Surface Chemistry on DNA Base-Pairing using Single-Molecule RE
使用单分子 RE 邻位表面化学对 DNA 碱基配对的影响
- 批准号:
8280932 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
Effects of Vicinal Surface Chemistry on DNA Base-Pairing using Single-Molecule RE
使用单分子 RE 邻位表面化学对 DNA 碱基配对的影响
- 批准号:
8442838 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
COLLABORATIVE RESEARCH: Uncovering the Kinetic Mechanism of Base-Pairing and Stacking in RNA Folding
合作研究:揭示 RNA 折叠中碱基配对和堆积的动力学机制
- 批准号:
0920588 - 财政年份:2009
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant